Investigación de los efectos de las actividades STEM en la actitud STEM en estudiantes superdotados
DOI:
https://doi.org/10.17162/au.v13i1.1309Palabras clave:
STEM, estudiantes superdotados, actitud, diseño mixto secuencial explicativo, logro STEMResumen
El efecto de las actividades STEM en la actitud STEM de los estudiantes superdotados y el rendimiento STEM se examinaron en el presente estudio. Los participantes son 23 estudiantes superdotados que estudian en el Centro de Ciencias y Arte en el año académico 2020-2021. Las actividades se completaron en 54 horas lectivas en el marco del proceso de diseño de ingeniería. El método de la investigación se determinó como diseño mixto secuencial explicativo. Se utilizó un diseño experimental de grupo único como método cuantitativo y el estudio de caso como método cualitativo. Los datos se recopilaron con la escala de actitud STEM (SAS) y un formulario de entrevista semiestructurada al estudiante en el estudio de caso. Al final de las actividades STEM, el rendimiento de los estudiantes se evaluó con la rúbrica de evaluación STEM (SAR). Como resultado, hubo una diferencia significativa entre las puntuaciones medias previas y posteriores a la prueba de actitud STEM de los estudiantes después de la aplicación STEM. La actitud STEM no difirió significativamente según el género y el grado, mientras que hubo una diferencia estadísticamente significativa a favor de las alumnas superdotadas en la subdimensión de ingeniería y tecnología. De acuerdo con las opiniones de los estudiantes superdotados, se ha entendido que las aplicaciones STEM mejoraron las actitudes de los estudiantes y sus habilidades del siglo XXI.Descargas
Citas
Almarode, J. T., Subotnik, R. F., Crowe, E., Tai, R. H., Lee, G. M., & Nowlin, F. (2014). Specialized High Schools And Talent Search Programs: Incubators For Adolescents With High Ability İn STEM Disciplines. Journal Of Advanced Academics, 25 (3), 307-331. https://doi.org/10.1177/1932202X14536566
Andersen, L. (2014). Visual–spatial ability: Important in STEM, ignored in gifted education. Roeper Review, 36 (2), 114-121. https://doi.org/10.1080/02783193.2014.884198
Ayar, M. C. (2015). First-Hand Experience With Engineering Design And Career İnterest İn Engineering: An İnformal STEM Education Case Study. Educational Sciences: Theory & Practice, 15 (6), 1655-1675. Https://Doi.Org/10.12738/Estp.2015.6.0134
Aydın, G., Saka, M., & Guzey, S. (2017). 4-8. sınıf öğrencilerinin fen, teknoloji, mühendislik, matematik (STEM=FETEMM) tutumlarının incelenmesi. Mersin Üniversitesi Eğitim Fakültesi Dergisi, 13 (2). 787-802. https://search.trdizin.gov.tr/yayin/detay/258094/
Baran, E., Canbazoglu-Bilici, S., Mesutoglu, C., & Ocak, C. (2016). Moving STEM beyond schools: Students’ perceptions about an out-of-school STEM education program. International Journal of Education in Mathematics, Science and Technology, 4 (1), 9-19. DOI:10.18404/ijemst.71338
Bircan, M. A. & Köksal, Ç. (2020). Özel Yetenekli Öğrencilerin Stem Tutumlarının ve STEM Kariyer İlgilerinin İncelenmesi. Turkish Journal of Primary Education, 5 (1), 16-32. https://dergipark.org.tr/en/pub/tujped/issue/55035/738824
Büyüköztürk, Ş. (2010). Sosyal bilimler için veri analizi el kitabı. Ankara: Pegem Akademi.
Bybee, R. W. (2010). Advancing STEM Education: A 2020 Vision. Technology and Engineering Teacher, 70, 30-35. https://eric.ed.gov/?id=ej898909
Ceylan, Ö., Ermiş, G., & Yıldız, G. (2018, Kasım). Özel yetenekli öğrencilerin bilim, teknoloji, mühendislik, matematik (STEM) eğitimine yönelik tutumları. International Congress on Giftedand Talented Education, 1-3 Kasım 2018, Malatya
Choi, K. M. (2014) Opportunities to Explore for Gifted STEM Students in Korea: From Admissions Criteria to Curriculum, Theory Into Practice, 53:1, 25-32, DOI: 10.1080/00405841.2014.862117
Christensen, R., Knezek, G., & Tyler-Wood, T. (2015). Alignment of hands-on STEM engagement activities with positive STEM dispositions in secondary school students. Journal of Science Education and Technology, 24 (6), 898-909. https://doi.org/10.1007/s10956-015-9572-6
Creswell, J. W. & Plano-Clark, V. L. ( 2018 ). Designing and Conducting Mixed Methods Research (3° Ed.). Los Angeles: SAGE Publications, Inc.
DeWitt, J., Archer, L., & Osborne, J. (2014). Science-related aspirations across the primary–secondary divide: Evidence from two surveys in England. International Journal of Science Education, 36 (10), 1609-1629. https://doi.org/10.1080/09500693.2011.608197
Faber, M., Unfrıed, A., Wıebe, E.N., Corn, J. Townsend, L.W. & Collıns, T. L. (2012). Student attitudes toward STEM: the development of upper elementary school and middle/high school student surveys. 120th ASSE Annual Conference & Exposition. Atalanta. DOI10.18260/1-2--22479
Fan, S-C., & Ritz, J. (2014). International views on STEM education. https://www.iteea.org/File.aspx?id=39511&v=a2bd6f55 Erişim tarihi:31.07.2022
Frenzel, A. C., Goetz, T., Pekrun, R., Watt, H. M. G. (2010). Development of mathematics interest in adolescence: Influences of gender, family and school context. Journal of Research on Adolescence, 20, 507-537. doi:10.1111/j.1532-7795.2010.00645.x
Gomez, A. & Albrecht, B. (2013). True STEM education. Technol. Eng. Teach. 73, 8–16.
Gökbayrak, S. & Karışan, D. (2017). Altıncı sınıf sisteminde FeTeMM temellerinin sağlanması. Alan Eğitimi Araştırmaları Dergisi , 3 (1), 25-40. https://dergipark.org.tr/en/download/article-file/267842
Guzey, S., & Aranda, M. (2017). Student participation in engineering practices and discourse: An exploratory case study. Journal of Engineering Education, 106 (4), 585-606. https://doi.org/10.1002/jee.20176
Häussler, P., & Hoffman, L. (2002). An intervention study to enhance girls’ interest, self-concept, and achievement in physics classes. Journal of Research in Science Teaching, 39 (9), 870-888. https://doi.org/10.1002/tea.10048
Heilbronner, N. N. (2011). Stepping Onto the STEM Pathway: Factors Affecting Talented Students' Declaration of STEM Majors in College. Journal for the Education of the Gifted, 34 (6), 0162353211425100–. doi:10.1177/0162353211425100
Hynes, M., Portsmore, M., Dare, E., Milto, E., Rogers, C., Hammer, D. & Carberry, A. (2011). Infusing Engineering Design İnto High School STEM Courses. National Center For Engineering and Technology Education. https://files.eric.ed.gov/fulltext/ED537364.pdf
Irkıçatal, Z. (2016). Fen, teknoloji ve matematik (FeTeMM) içerikli okul sonrası etkinliklerin öğrencilerin başarılarına ve FeTeMM algıları üzerine etkisi. Yükseklisans Tezi. Akdeniz Üniversitesi, Eğitim Bilimleri Enstitüsü, Antalya.
Jolly, J. L. (2009). The national defense education act, current STEM initiative, and the gifted. Gifted Child Today, 32 (2), 50-53. https://doi.org/10.4219/gct-2009-873
Kalik, G. & Kırındı, T. (2022). Fen Bilimleri Dersinde Okul Dışı STEM Etkinliklerinin Üstün/Özel Yetenekli Öğrencilerin STEM’e Karşı Tutumlarına Ve Girişimcilik Becerileri Üzerine Etkisi. Fen Bilimleri Öğretimi Dergisi, 10 (1), 38-63. DOI: https://doi.org/10.56423/fbod.1058632
Kanlı, E., & Özyaprak, M. (2016). Stem education for gifted and talented students in Turkey. Üstün Yetenekliler Eğitimi ve Araştırmaları Dergisi (UYAD), 3 (2), 1-10.
Karahan, E., Bilici, S. C., & Ünal, A. (2015). Integration of media design processes in science, technology, engineering, and mathematics (STEM) education. Eurasian Journal of Educational Research, 15 (60), 221-240. https://doi.org/10.14689/ejer.2015.60.15
Karakaya, F. & Avgın, S. S. (2016). Effect of demographic features to middle school students’ attitude towards STEM. Journal of Human Sciences, 13 (3), 4188- 4198. doi:10.14687/jhs.v13i3.4104
Kennedy, J., Quinn, F., & Taylor, N. (2016). The school science attitude survey: a new inSDRument for measuring attitudes towards school science. International Journal of Research & Method in Education, 39 (4), 422-445. https://doi.org/10.1080/1743727X.2016.1160046
Kılıç, S. (2014). Etki büyüklüğü. Journal of Mood Disorders, 4 (1), 44-6. https://doi.org/10.5455/jmood.20140228012836
Kırıktaş, H., & Şahin, M. (2019). Lise öğrencilerinin STEM alanlarına yönelik kariyer ilgileri ve tutumlarının demografik değişkenler açısından incelenmesi. Academia Eğitim Araştırmaları5Dergisi, 4 (1), 55-77. https://doi.org/10.29000/rumelide.752051 .
Kim, M. K., Roh, I. S., Cho, M. K. (2016). Creativity of gifted students in an integrated math-science inSDRuction. Thinking Skills and Creativity 19, 38–48.https://doi.org/10.1016/j.tsc.2015.07.004
Knezek, G., Christensen, R., Tyler-Wood, T., & Periathiruvadi, S. (2013). Impact of Environmental Power Monitoring Activities on Middle School Student Perceptions of STEM. Science Education International, 24 (1), 98-123.
Kocaman, B. (2022). Development of an analytical thinking based online stem curriculum and investigation of its efficiency. Doktora Tezi. Afyon Kocatepe Üniversitesi: Afyon.
Kurt, M. (2019), STEM Uygulamalarının 6. Sınıf Öğrencilerinin Akademik Başarılarına, Problem Çözme Becerilerine ve STEM 'e Karşı Tutumlarına Etkisi Üzerine Bir Araştırma. Yayımlanmamış Yüksek Lisans Tezi, Gazi Üniversitesi, Ankara.
Lamb, R., Akmal, T., & Petrie, K. (2015). Development of a cognition‐priming model describing learning in a STEM classroom. Journal of Research in Science Teaching, 52 (3), 410-437. https://doi.org/10.1002/tea.21200
Maltese, A. V., & Tai, R. H. (2011). Pipeline persistence: Examining the association of educational experiences with earned degrees in STEM among U.S. students. Science Education, 95 (5), 877-907. https://doi.org/10.1002/sce.20441
Margot, K. C. & Kettler, T. (2019). Teachers’ perception of STEM integration and education: A systematic literature review. Int. J. STEM Educ., 6 (2). https://doi.org/10.1186/s40594-018-0151-2
Mau, W.-C. (2003). Factors That Influence Persistence in Science and Engineering Career Aspirations. Career Development Quarterly, 51 (3), 234-243. https://doi.org/10.1002/j.2161-0045.2003.tb00604.x
Moore, T. J., Stohlmann, M. S., Wang, H. H., Tank, K. M., Glancy, A. W., & Roehrig, G. H. (2014). Implementation and integration of engineering in K-12 STEM education. In Engineering in pre-college settings: Synthesizing research, policy, and practices (pp. 35-60). Purdue University Press.
Morrison, J. (2006). TIES STEM education monograph series, attributes of STEM education. Teaching Institute for Essential Science.
Moskal, B. M. & Leydens, J. A. (2000). Scoring Rubric Development: Validity and Reliability. Practical Assessment, Reseach & Evaluation, 7 (10). 71-81. https://doi.org/10.7275/q7rm-gg74
Köse, M., Kurtuluş, M. A., & Bilen, K. (2020). The relationship of stem attitudes and reflective thinking skills on problem-solving. OPUS Uluslararası Toplum Araştırmaları Dergisi, 16 (27), 76-93. https://doi.org/10.26466/opus.667004
Naizer, G. (2014). Narrowing the gender gap: Enduring changes in middle school students’ attitude toward math, science and technology. Journal of STEM Education: Innovations and Research, 15 (3).
Özcan, H., & Koca, E. (2018). STEM’e Yönelik Tutum Ölçeğinin Türkçeye Uyarlanması: Geçerlik ve güvenirlik çalışması. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi. 2-15. doi: 10.16986/HUJE.2018045061
Özçelik, A., & Akgündüz, D. (2018). Üstün/Özel yetenekli öğrencilerle yapılan okul dışı STEM eğitiminin değerlendirilmesi. Trakya Üniversitesi Eğitim Fakültesi Dergisi, 8 (2), 334-351. https://doi.org/10.24315/trkefd.331579
Patton, M. Q. (2014). Qualitative research & evaluation methods: Integrating theory and practice. Los Angeles: SAGE publications.
Plano-Clark, V. L., & Creswell, J. W. (2015). Understanding research: A consumer’s guide. New Jersey: Pearson Education, Inc
Regan, E. & DeWitt, J. (2015). Attitudes, Interest and Factors Influencing STEM Enrolment Behaviour: An Overview of Relevant Literature. In: Henriksen, E., Dillon, J., Ryder, J. (eds) Understanding Student Participation and Choice in Science and Technology Education. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7793-4_5
Robinson, A., Dailey, D.; Hughes, G. & Cotabish, A. (2014). The Effects of a Science-Focused STEM Intervention on Gifted Elementary Students' Science Knowledge and Skills. Journal of Advanced Academics, 25 (3), 189–213. doi:10.1177/1932202x14533799
Rothwell, J. (2013). The Hidden STEM Economy. Washington, D. C.: The Metropolitan Policy Program at Brookings.
Sanders, M. E., (2012). Integrative STEM education as “best practice”. Griffith Institute for Educational Research, Queensland, AuSDRalia.
Schroth, S. T., & Helfer, J. A. (2017). Gifted & green: Sustainability/environmental science investigations that promote gifted children’s learning. Gifted Child Today, 40 (1), 14-28. https://doi.org/10.1177/1076217516675903
Shimwell, J., DeWitt, J., Davenport, C., Padwick, A., Sanderson, J., & Strachan, R. (2021). Scientist of the week: evaluating effects of a teacher-led STEM intervention to reduce stereotypical views of scientists in young children. Research in Science & Technological Education, 1-21. DOI: 10.1080/02635143.2021.1941840
Steenbergen-Hu, S. & Olszewski-Kubilius, P. (2017). Factors that contributed to gifted students’ success on STEM pathways: the role of race, personal ınterests, and aspects of high school experience. Journal for the Education of the Gifted, 40 (2), 99–134. doi:10.1177/0162353217701022
Stehle, S. M., & Peters-Burton, E. E. (2019). Developing student 21 st Century skills in selected exemplary inclusive STEM high schools. International Journal of STEM education, 6 (1), 1-15. DOI:10.1186/s40594-019-0192-1
Stemler, S. E. (2004). A comparison of consensus, consistency, and measurement approaches to estimating interrater reliability. Practical Assessment, Research, and Evaluation, 9 (1), 4. DOI: https://doi.org/10.7275/96jp-xz07
Stoeger, H., Hopp, M. & Ziegler, A. (2017). STEM'deki (bilim, teknoloji, mühendislik ve matematik) yetenekli kızları teşvik etmek için müfredat dışı bir önlem olarak çevrimiçi mentorluk: Bire bir ve grup mentorluğunun ampirik bir çalışması. Üstün Yetenekli Çocuk Üç Aylık , 61 (3), 239-249. doi:10.1177/0016986217702215
Şahin, A., Ayar, M. C., & Adiguzel, T. (2014). STEM Related After-School Program Activities and Associated Outcomes on Student Learning. Educational Sciences: Theory and Practice, 14 (1), 309-322. DOI: 10.12738/estp.2014.1.1876
Şen, C., Ay, Z. S., & Kiray, S. A. (2021). Computational thinking skills of gifted and talented students in integrated STEM activities based on the engineering design process: The case of robotics and 3D robot modeling. Thinking Skills and Creativity, 42, 100931. https://doi.org/10.1016/j.tsc.2021.100931
Tay, J., Salazar, A., & Lee, H. (2018). Parental perceptions of STEM enrichment for young children. Journal for the Education of the Gifted, 41 (1), 5-23. https://doi.org/10.1177/0162353217745159
Tofel-Grehl, C., & Callahan, C. M. (2017). STEM high schools teachers’ belief regarding STEM student giftedness. Gifted Child Quarterly, 61 (1), 40-51. https://doi.org/10.1177/0016986216673712
Unfried, A., Faber, M., Stanhope, D. S., & Wiebe, E. (2015). The development and validation of a measure of student attitudes toward science, technology, engineering, and math (S-STEM). Journal of Psychoeducational Assessment, 33 (7), 622-639. https://doi.org/10.1177/0734282915571160
Varol, D. G. (2020), Tasarım Temelli STEM Eğitimi Etkinliklerinin 7. Sınıf Öğrencilerinde Akademik Başarılara, STEM'e Yönelik Tutumlara ve STEM Meslek İlgisine Olan Etkisinin Belirlenmesi. Yayımlanmamış Yüksek Lisans Tezi, Fırat Üniversitesi, Elazığ.
Wang, X. (2013). Why students choose STEM majors: Motivation, high school learning, and postsecondary context of support. American Educational Research Journal, 50 (5), 1081-1121. https://doi.org/10.3102/0002831213488622
Wang, M. T., Eccles, J. S., & Kenny, S. (2013). Not lack of ability but more choice: Individual and gender differences in choice of careers in science, technology, engineering, and mathematics. Psychological science, 24 (5), 770-775. doi:10.1177/ 0956797612458937
Wicklein, R. C., & Schell, J. W. (1995). Case studies of multidisciplinary approaches to integrating mathematics, science, & technology education. 6 (2) 59-76.DOI: http://doi.org/10.21061/jte.v6i2.a.5
Yamak, H., Bulut, N., & Dündar, S. (2014). 5. Sınıf öğrencilerinin bilimsel süreç becerileri ile fene karşı tutumlarına FeTeMM etkinliklerinin etkisi. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 34 (2), 249-265. https://doi.org/10.17152/gefd.15192
Yıldırım, H. H., & Yıldırım, S. (2011). Hipotez Testi, Güven Aralığı, Etki Büyüklüğü Ve Merkezi Olmayan Olasılık Dağılımları Üzerine. İlköğretim Online, 10 (3), 1112-1123.
Yin, R. K. (2003). Designing case studies. Qualitative research methods, 5 (14), 359-386.
Yoon, S. Y., & Mann, E. L. (2017). Exploring the spatial ability of undergraduate students: association with gender, STEM majors, and gifted program membership. Gifted Child Quarterly, 61 (4), 313-327. https://doi.org/10.1177/0016986217722614
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Berrak Kocaman
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
1. Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (veaThe Effect of Open Access).