Predicción de resultados académicos con la aplicación nntool en Matlab utilizando redes neuronales artificiales

Autores/as

DOI:

https://doi.org/10.17162/au.v12i1.976

Palabras clave:

Rendimiento académico, nntool, redes neuronales artificiales, predicción, educación.

Resumen

En el 2018, Perú participó de la Evaluación Internacional de Estudiantes (PISA), donde se evidenciaron resultados desalentadores en los estudiantes de educación básica regular. En tal sentido, se consideró la predicción de resultados académicos como un instrumento de mejora del rendimiento escolar. El objetivo de esta investigación fue predecir el promedio anual de estudiantes del segundo grado de la Institución Educativa N°16093 en la provincia de Jaén-Perú, mediante el diseño e implementación de una red neuronal artificial (RNA). Para la recolección de datos de las variables que influyen en el promedio anual del estudiante, se elaboró un cuestionario de respuestas dicotómicas. En la validación y confiabilidad, se utilizó el criterio de juicio de expertos y la prueba Kuder-Richarson respectivamente, en el cual el coeficiente de confiabilidad obtenido en una prueba piloto aplicado a 15 estudiantes fue de 0.8359. En el software científico Matlab con la ayuda de la aplicación nntool, se diseñó la RNA formada por tres capas ocultas y una capa de salida. La RNA durante el entrenamiento, la validación y la prueba, registró un coeficiente de correlación ponderado de 0.967190, y un error cuadrático medio de 0.05011. El modelo neuronal implementado bajo las condiciones dadas logró una efectividad del 88.670% y 98.522%.  

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Álvarez, J., Lau, R., Pérez, S., & Leyva, E. C. (2016). Predicción de resultados académicos de estudiantes de informática mediante el uso de redes neuronales. Ingeniare. Revista chilena de ingeniería, 24 (4), 715-727. https://doi.org/10.4067/S0718-33052016000400015

Barreto, W. & Picón, R. (2020). Experimental and simulation study of compose panels inelastic behavior using Artificial Neural Networks. Informes de la Construccion, 72(558), 1-10. https://doi.org/10.3989/ic.70957

Çetinkaya, A. & Baykan, Ö. K. (2020). Prediction of middle school students’ programming talent using artificial neural networks. Engineering Science and Technology, an International Journal. https://doi.org/10.1016/j.jestch.2020.07.005

Comella, A., Casas-Baroy, J.-C., Comella-Company, A., Galbany-Estragués, P., Pujol, R. & Marc-Amengual, J.-M. (2021). Burnout and academic performance: Effect of the combination of remunerated jobs and starting university degree studies. Retos, 41, 844-853. https://doi.org/10.47197/RETOS.V41I0.85971

Costa, E. B., Fonseca, B., Santana, M. A., de Araújo, F. F., & Rego, J. (2017). Evaluating the effectiveness of educational data mining techniques for early prediction of students’ academic failure in introductory programming courses. Computers in Human Behavior, 73, 247-256. https://doi.org/10.1016/j.chb.2017.01.047

Criollo, M., Romero, M., & Fontaines-Ruiz, T. (2017). Autoeficacia para el aprendizaje de la investigación en estudiantes universitarios. Psicología Educativa, 23 (1), 63-72. https://doi.org/10.1016/j.pse.2016.09.002

da Silva, A. X., de Oliveira, S. C., & de Araújo, R. F. G. (2020). Propuesta de prototipo de aplicación de Android para diagnósticos de enfermería utilizando redes neuronales artificiales. Revista Cubana de Enfermería, 36 (2), Article 2. http://revenfermeria.sld.cu/index.php/enf/article/view/3252

Díaz-Muñoz, G. (2020). Metodología del estudio piloto. Revista chilena de radiología, 26 (3), 100-104. https://doi.org/10.4067/S0717-93082020000300100

Echeverría-Ramírez, J. A., & Mazzitelli, C. (2021). A study of the perception of the institutional factors that influence the academic performance of students of the Distance State University of Costa Rica. Revista Electrónica Educare, 25 (2). https://doi.org/10.15359/ree.25-2.18

Ferraces, M. J., Moledo, M. L., Otero, A. G. & Santos, M. A. (2021). Students’ mediator variables in the relationship between family involvement and academic performance: Effects of the styles of involvement. Psicologia Educativa, 27 (1), 85-92. https://doi.org/10.5093/PSED2020A19

Figueroa-Garcia, E., Farias-Cervantes, V. S., Segura-Castruita, M., Andrade-Gonzalez, I., Montero-Cortés, M. I., & Chávez-Rodríguez, A. M. (2021). Using artificial neural networks in prediction of the drying process of foods that are rich in sugars. Revista Mexicana de Ingeniera Quimica, 20 (1), 161-171. https://doi.org/10.24275/rmiq/Sim1403

Foster, R. C. (2020). A generalized framework for classical test theory. Journal of Mathematical Psychology, 96. https://doi.org/10.1016/j.jmp.2020.102330

Foster, R. C. (2021). KR20 and KR21 for Some Nondichotomous Data (It’s Not Just Cronbach’s Alpha). Educational and Psychological Measurement. https://doi.org/10.1177/0013164421992535

González-García, N., Sánchez-García, A. B., Nieto-Librero, A. B., & Galindo-Villardón, M. P. (2019). Actitud y enfoques de aprendizaje en el estudio de la Didáctica General. Una visión multivariante. Revista de Psicodidáctica, 24 (2), 154-162. https://doi.org/10.1016/j.psicod.2019.02.002

González-Velasco, C., Feito-Ruiz, I., González-Fernández, M., Álvarez-Arenal, J.-L. & Sarmiento-Alonso, N. (2021). Does the teaching-learning model based on the flipped classroom improve academic results of students at different educational levels? Revista Complutense de Educacion, 32 (1), 27-39. https://doi.org/10.5209/RCED.67851

Goyes-Peñafiel, P. & Hernandez-Rojas, A. (2021). Double landslide susceptibility assessment based on artificial neural networks and weights of evidence. Boletin de Geologia, 43 (1), 173-191. https://doi.org/10.18273/revbol.v43n1-2021009

Hernández, R. M. (2018). La estrategia didáctica frente a los estilos de aprendizaje en la educación superior. Educación Médica, 19, 227. https://doi.org/10.1016/j.edumed.2017.10.034

Incio, F. A. & Capuñay, D. L. (2020). Liderazgo directivo y desempeño docente en instituciones educativas particulares. Revista Científica Epistemia, 4 (3), 119-128. https://doi.org/10.26495/re.v4i3.1422

Incio, F. A., Capuñay, D. L., Estela, R. O., Delgado, J. A. & Vergara, S. E. (2021). Diseño e implementación de una red neuronal artificial para predecir el rendimiento académico en estudiantes de Ingeniería Civil de la UNIFSLB. Revista Veritas et Scientia, 10 (1), 107-117. https://doi.org/10.47796/ves.v10i1.464

International Business Machines Corporation. (2021). Conceptos básicos de ayuda de CRISP-DM. Conceptos básicos de ayuda de CRISP-DM. https://prod.ibmdocs-production-dal-6099123ce774e592a519d7c33db8265e-0000.us-south.containers.appdomain.cloud/docs/es/spss-modeler/SaaS?topic=dm-crisp-help-overview

Johnson, K. B., Ferguson, D. H., Tempke, R. S. & Nix, A. C. (2021). Application of a Convolutional Neural Network for Wave Mode Identification in a Rotating Detonation Combustor Using High-Speed Imaging. Journal of Thermal Science and Engineering Applications, 13 (6). https://doi.org/10.1115/1.4049868

Lejía, C.-T., Ng, L.-N., Hassan, M. D., Goh, W.-W., Ley, C.-Y. & Ismail, N. (2010). Predicting pre-university students’ mathematics achievement. 8, 299-306. https://doi.org/10.1016/j.sbspro.2010.12.041

López-Aguilar, D. & Álvarez-Pérez, P. R. (2021). Modelo predictivo PLS-SEM sobre intención de abandono académico universitario durante la COVID-19. Revista Complutense de Educación, 32 (3), 451-461. https://doi.org/10.5209/rced.70507

Martins, M. P. G., Migueis, V. L., Fonseca, D. S. B. & Gouveia, P. D. F. (2020). Prediction of academic dropout in a higher education institution using data mining. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, 2020 (E28), 188-203.

Menacho, C. H. (2017). Predicción del rendimiento académico aplicando técnicas de minería de datos. Anales Científicos, 78 (1), 26-33. https://doi.org/10.21704/ac.v78i1.811

Moreira, F., Ferreira, M. J., Pereira, C. S., Gomes, A. S., Collazos, C. & Escudero, D. F. (2019). ECLECTIC as a learning ecosystem for higher education disruption. Universal Access in the Information Society, 18 (3), 615-631. https://doi.org/10.1007/s10209-019-00682-x

Olascoaga, A. C. (2020). Curso de docencia para residentes: Evaluación de un programa. Educación Médica, 21 (3), 187-192. https://doi.org/10.1016/j.edumed.2018.07.010

Pal, J. & Chakrabarty, D. (2020). Assessment of artificial neural network models based on the simulation of groundwater contaminant transport. Hydrogeology Journal, 28 (6), 2039-2055. https://doi.org/10.1007/s10040-020-02180-4

Pizarro, S., Santillán, G., Vilela, J. & Hildebrandt, A. (2021). Factors related to academic performance in Veterinary Medicine students. Revista de Investigaciones Veterinarias del Peru, 32 (1). https://doi.org/10.15381/RIVEP.V32I1.19509

Porras, M. M. & Ortega, F. H. (2021). Procrastination, test anxiety and academic performance on university students. Interdisciplinaria, 38 (2), 243-258. https://doi.org/10.16888/INTERD.2021.38.2.16

Ramos, R. T. & Gómez, N. N. (2021). The influence of the teacher on the motivation, learning strategies, critical thinking and academic performance of high school students in Physical Education. Psychology, Society and Education, 11 (1), 137-150. https://doi.org/10.25115/psye.v11i1.2230

Rodríguez, D. D., Ordoñez, R. E. & Hidalgo-Villota, M. E. (2021). Determinantes del rendimiento académico de la educación media en el departamento de Nariño, Colombia. Lecturas de Economía, 94, 87-126. https://doi.org/10.17533/udea.le.n94a341834

Rodríguez, H. E. D., Castro, M. M. S. & Rosales, M. A. C. (2021). Financial performance and administrative practices in Mexican microenterprises: An analysis with artificial neural networks. Contaduria y Administracion, 64 (3). https://doi.org/10.22201/FCA.24488410E.2018.1622

Sabir, Z., Nisar, K., Raja, M. A. Z., Ibrahim, A. A. B. A., Rodrigues, J. J. P. C., Al-Basyouni, K. S., Mahmoud, S. R. & Rawat, D. B. (2021). Design of Morlet wavelet neural network for solving the higher order singular nonlinear differential equations. Alexandria Engineering Journal, 60 (6), 5935-5947. https://doi.org/10.1016/j.aej.2021.04.001

Sagredo, A. V., Etchepare, G. C., Mendizabal, E. A. & Wilson, C. P. (2021). Academic performance and its relationship with socioemotional variables in chilean students from vulnerable contexts. Educacion XX1, 24 (2), 375-398. https://doi.org/10.5944/educxx1.28269

Şenyurt, M., Ercanlı, İ., Günlü, A., Bolat, F. & Bulut, S. (2020). Artificial neural network models for predicting relationships between diameter at breast height and stump diameter: Crimean pine stands at ÇAKÜ forest. Bosque, 41 (1), 25-34. https://doi.org/10.4067/S0717-92002020000100025

Sosa, M., Ortiz, E. & Cabello, A. (2021). Impact of social lags on the number of deaths and confirmed cases by COVID-19 in Mexico: Artificial neural network analysis employing municipal information. Contaduria y Administracion, 65 (5). https://doi.org/10.22201/fca.24488410e.2020.3020

Wingerter, D. G., de Oliveira Santos, E. G. & Barbosa, I. R. (2020). The use of artificial neural networks to classify the social vulnerability of municipalities in Rio Grande do Norte State, Brazil. Cadernos de Saude Publica, 36 (8). https://doi.org/10.1590/0102-311X00038319

Wunderlich, T. C. & Pehle, C. (2021). Event-based backpropagation can compute exact gradients for spiking neural networks. Scientific Reports, 11 (1). https://doi.org/10.1038/s41598-021-91786-z

Descargas

Publicado

2021-12-06

Cómo citar

Capuñay Sanchez, D. L. ., Incio Flores, F. A. ., Estela Urbina, R. O. ., Montenegro Camacho, L. ., Delgado Soto, J. A. ., & Cueva Valdivia, J. . (2021). Predicción de resultados académicos con la aplicación nntool en Matlab utilizando redes neuronales artificiales. Apuntes Universitarios, 12(1), 386–403. https://doi.org/10.17162/au.v12i1.976