La formación de la capacidad matemática de los estudiantes a través de tareas orientadas a la competencia.
DOI:
https://doi.org/10.17162/au.v11i4.775Palabras clave:
Matemáticas, competencias, educación, algebra, ciencias formales.Resumen
El objetivo del presente artículo es revelar las posibilidades del contenido de la enseñanza del álgebra lineal en la formación de la competencia matemática de los futuros ingenieros mecánicos. La implementación de la investigación experimental involucró el uso de métodos cualitativos y cuantitativos: observaciones, conversaciones con profesores de disciplinas matemáticas, pruebas y procesamiento matemático de los resultados de la investigación. Se preparó el soporte metodológico del curso “Álgebra lineal”, que contiene un sistema de tareas orientadas a competencias. El estudio se realizó en la Universidad Industrial de Tyumen (Rusia). Se formaron grupos experimentales (86 alumnos) y de control (87 alumnos) a partir de estudiantes del primer y segundo año. En los grupos de control, el entrenamiento se llevó a cabo según el método tradicional. El análisis estadístico de los resultados obtenidos al comparar dos distribuciones empíricas se realizó mediante la prueba de la χ2 de Pearson. Como resultado del estudio, se identificaron las características de la disciplina académica “Álgebra lineal” en la formación de competencias matemáticas de estudiantes de universidades técnicas. Se desarrolló un enfoque para la formulación de un problema orientado a las competencias. La clasificación de tareas se realizó por tipos (algorítmica, de investigación, computacional, instrumental, modelado) y niveles (reproducción, establecimiento de conexiones, razonamiento). Los resultados del trabajo científico y experimental indican un aumento en el nivel de competencia matemática de los futuros ingenieros mecánicos y confirman completamente la efectividad del método propuesto para enseñar álgebra lineal.Descargas
Citas
Akhyadov, E. S. M., Goncharov, V. V., & Makushkin, S. A. (2020). Video marketing in education: attracting applicants using the youtube service. Revista Inclusiones, 7, 387-396. https://revistainclusiones.org/index.php/inclu/article/view/1380
Alcock, L., Ansari, D., Batchelor, S., Bisson, M. J., De Smedt, B., Gilmore, C., & Weber, K. (2016). Challenges in mathematical cognition: A collaboratively-derived research agenda. Journal of Numerical Cognition, 2, 20-41. https://jnc.psychopen.eu/index.php/jnc/article/view/5681
Alpers, B. (2010). Studies on the mathematical expertise of mechanical engineers. Journal of Mathematical Modelling and Application, 1 (3), 2-17. https://doi.org/10.1007/978-94-007-0910-2_44
Anufrieva, N. I., Volkov, L. V., Aralova, E. V., Kolomyts, O. G., & Myagkova, E. V. (2020). Environmental education: nurturing of the humanistic orientation of a personality. Universal Journal of Educational Research, 8 (11), 5529-5535. https://www.hrpub.org/journals/article_info.php?aid=9941
Bamforth, S. E., Robinson, C. R., Croft, A. C., & Crawford, A. (2007). Retention and progression of engineering students with diverse mathematical backgrounds. Teaching Mathematics and its Applications, 26 (4), 156-166. https://doi.org/10.1093/teamat/hrm004
Baturina, R. V. & Khasanova, G. B. (2020). Mathematical training as a means of forming the general scientific competency of economists. Universal Journal of Educational Research, 8 (11), 6116 – 6123. http://dx.doi.org/10.13189/ujer.2020.082247
Beklemisheva, L. A., Petrovich, A. Y., & Chubarov, I. A. (2004). Posobie Collection of Tasks in Analytical Geometry and Linear Algebra: Textbook. Moscow, Russia: Fizmatlit.
Berliner, D. C. (2015). The many facets of PISA. Teachers College Record, 117 (1), 20. https://eric.ed.gov/?id=EJ1056719
Blomhoj, M., & Jensen, T. H. (2003). Developing mathematical modelling competence: conceptual clarification and educational planning. Teaching mathematics and its applications, 22 (3), 123-139. https://doi.org/10.1093/teamat/22.3.123
Bondarenko, N. G., Oleynik, A., Biryukov, V. A., Tarando, E. E., & Malinina, T. B. (2020). Smart city: integration of information and communication technologies. IIOAB Journal, 11 (3), 106–110. https://www.iioab.org/IIOABJ_11.S3_106-110.pdf
Cardella, M. (2008). Which mathematics should we teach engineering students? An empirically grounded case for a broad notion of mathematical thinking. Teaching Mathematics and its Applications, 27 (3), 150-159. https://doi.org/10.1093/teamat/hrn008
Efimov, A. V., & Pospelov, A. S. (2001). Collection of mathematical tasks for technical universities, part 1: Textbook for technical universities. Moscow, Russia: Izdatelstvo Fiziko-matematicheskoi literatury.
Efremenko, A. P, Berezhnoy, D. A., Tsilinko, A. P., Lomakina, T. A., & Solovey, A. I. (2020). Case method in vocational training for future specialists of culture and art. Universal Journal of Educational Research, 8 (9), 3793-3798. https://doi.org/10.13189/ujer.2020.080901
Hasibuan S. A., & Fauzi M. A. (2020). Development of PISA mathematical problem model on the content of change and relationship to measure students mathematical problem-solving ability. International Electronic Journal of Mathematics Education, 15 (2). https://doi.org/10.29333/iejme/6274
Henderson, S., & Broadbridge, P. (2009). Engineering mathematics education in Australia. MSOR Connections, 9 (1), 12-17. https://doi.org/10.11120/msor.2009.09010012
Lavrinenko, T. A., & Mikhno, V. N. (2017). Modern educational technologies and teaching mathematics in higher education. Bulletin of Tver State University, 3, 120-127. https://core.ac.uk/download/pdf/128641771.pdf
Lein, A. E., Jitendra, A. K., & Harwell, M. R. (2020). Effectiveness of mathematical word problem solving interventions for students with learning disabilities and/or mathematics difficulties: a meta-analysis. Journal of Educational Psychology, 112 (7), 1388–1408. https://doi.org/10.1037/edu0000453
Lopez, A. G. (2011). An example of learning based on competences: Use of Maxima in Linear Algebra for Engineers. International Journal for Technology in Mathematics Education 18 (4), 177-181. https://www.researchgate.net/publication/295869239_An_example_of_learning_based_on_competences_Use_of_Maxima_in_Linear_Algebra_for_Engineers
Lutsan, N. I., Struk, A. V., Liubyva, V. V., Kulish, I. D., & Vertuhina, V. N. (2020). The readiness of future specialists of preschool education to creative self-realization in professional activity. Propósitos y Representaciones, 8 (3). http://dx.doi.org/10.20511/pyr2020.v8n3.531.
Mason, J. (2020). Generating worthwhile mathematical tasks in order to sustain and develop mathematical thinking. Sustainability, 12 (4). https://doi.org/10.3390/su12145727
Niss, M. (2003). Quantitative literacy and mathematical competencies. En B. L. Madison & L. A. Steen (Eds.), Quantitative literacy: why numeracy matters for schools and colleges. National Council on Education and the Disciplines.
Novak, E. (2017). Toward a mathematical model of motivation, volition, and performance. Computers & Education, 74, 73-80. https://doi.org/10.1016/j.compedu.2014.01.009
Novitsky, N. (December 11, 2020). Mathematical modeling of hydraulic chains as cyber-physical objects [Rudenko International Conference on Methodological Problems in Reliability Study of Large Energy Systems]. E3S Web of Conferences, Kazan Russia. https://doi.org/10.1051/e3sconf/202021601091
Proskuryakov, I. V. (2005). Collection of tasks in linear algebra. Moscow, Russia: BINOM. Laboratoriya znanii.
Rensaa, R.J., Hogstad, N.M. & Monaghan, J. (2020). Teaching mathematics and its applications, International Journal of the IMA, 39 (4), 296–309. https://doi.org/10.1093/teamat/hraa002
Rosli, R., Goldsby, D., & Capraro, M. M. (2013). Assessing students’ mathematical problem-solving and problem-posing skills. Asian Social Science, 9, 54-60. https://doi.org/10.5539/ass.v9n16p54
Simanjuntak, D., Napitupulu, E. E., & Manullang, M. (2018). The enhancement difference of student mathematical problem solving ability between guided discovery learning model and direct learning model. American Journal of Educational Research, 6 (12), 1688-1692. https://doi.org/10.12691/education-6-12-15
Siregar, N., Asmin, M., & Fauzi, M. A. (2018). The Effect of Problem Based Learning Model on Problem Solving Ability Student. The 3th Annual International Seminar on Transformative Education and Educational Leadership, 200, 464-467. https://doi.org/10.2991/aisteel-18.2018.100
Stefanova, G. P., Krutova, I. A., & Valisheva, A. G. (2011). Innovative approach to developing methods for solving typical professional tasks among future engineers. Alma mater, Bulletin of Higher Education, 8, 48–51. https://almavest.ru/ru/archive/771/2634
Szabo, Z. K., Körtesi, P., Guncaga, J., Szabo, D., & Neag, R. (2020). Examples of problem-solving strategies in mathematics education supporting the sustainability of 21st-century skills. Sustainability, 12. https://doi.org/10.3390/su122310113
Tereshchenko, E. A., Kovalev, V. V., Trofimov, M. S., & Zasseev, D. A. (2020). Legal consciousness as a factor promoting the achievement of educational objectives and the realization of the right to education by individuals and collectives. Revista Tempos e Espaços em Educação, 13 (32). https://doi.org/10.20952/revtee.v13i32.14690
Tovarnichenko, L. V., & Stepkina, M. A. (2015). Innovative techniques of teaching mathematics students of non-core areas of training at the university. Modern problems of science and education, 4, 146. http://www.science-education.ru/ru/article/view?id=20851
Xu, X., Sun, J., Endo, S., Li, Y., Benjamin, S.C., & Yuan, X. (2019). Variational algorithms for linear algebra. Quantum Physics. https://arxiv.org/abs/1909.03898v1
Yarullin, I. F., Bushmeleva, N. A., & Tsyrkun, I. I. (2015). The research competence development of students trained in mathematical direction. Mathematics Education, 10 (3), 137-146. https://www.iejme.com/article/the-research-competence-development-of-students-trained-in-mathematical-direction
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Natalya Vladimirovna Terekhova, Elena Aleksandrovna Zubova
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
1. Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (veaThe Effect of Open Access).