Prediction of academic results with the nntool application in Matlab using artificial neural networks
DOI:
https://doi.org/10.17162/au.v12i1.976Keywords:
Academic performance, nntool, artificial neural networks, prediction, education.Abstract
In 2018, Peru participated in the International Student Assessment (PISA), where disappointing results were evidenced in students of regular basic education. In this sense, the prediction of academic results was considered as an instrument for improving school performance. The objective of this research was to predict the annual average of second grade students of the Educational Institution N ° 16093 in the province of Jaén-Peru, through the design and implementation of an artificial neural network (ANN). To collect data on variables that influence the annual average of the student, a questionnaire with dichotomous responses was developed. In the validation and reliability, we used the expert judgment criterion and the Kuder-Richarson test respectively, the reliability coefficient obtained in a pilot test applied to 15 students was 0.8359. In the Matlab Scientific Software with the help of the nntool application, the RNA was designed consisting of three hidden layers and an output layer. The ANN during training, validation and testing, registered a weighted correlation coefficient of 0.967190, and a mean square error of 0.05011. The neural model implemented under the given conditions achieved an effectiveness of 88.670% and 98.522%.Downloads
References
Álvarez, J., Lau, R., Pérez, S., & Leyva, E. C. (2016). Predicción de resultados académicos de estudiantes de informática mediante el uso de redes neuronales. Ingeniare. Revista chilena de ingeniería, 24 (4), 715-727. https://doi.org/10.4067/S0718-33052016000400015
Barreto, W. & Picón, R. (2020). Experimental and simulation study of compose panels inelastic behavior using Artificial Neural Networks. Informes de la Construccion, 72(558), 1-10. https://doi.org/10.3989/ic.70957
Çetinkaya, A. & Baykan, Ö. K. (2020). Prediction of middle school students’ programming talent using artificial neural networks. Engineering Science and Technology, an International Journal. https://doi.org/10.1016/j.jestch.2020.07.005
Comella, A., Casas-Baroy, J.-C., Comella-Company, A., Galbany-Estragués, P., Pujol, R. & Marc-Amengual, J.-M. (2021). Burnout and academic performance: Effect of the combination of remunerated jobs and starting university degree studies. Retos, 41, 844-853. https://doi.org/10.47197/RETOS.V41I0.85971
Costa, E. B., Fonseca, B., Santana, M. A., de Araújo, F. F., & Rego, J. (2017). Evaluating the effectiveness of educational data mining techniques for early prediction of students’ academic failure in introductory programming courses. Computers in Human Behavior, 73, 247-256. https://doi.org/10.1016/j.chb.2017.01.047
Criollo, M., Romero, M., & Fontaines-Ruiz, T. (2017). Autoeficacia para el aprendizaje de la investigación en estudiantes universitarios. Psicología Educativa, 23 (1), 63-72. https://doi.org/10.1016/j.pse.2016.09.002
da Silva, A. X., de Oliveira, S. C., & de Araújo, R. F. G. (2020). Propuesta de prototipo de aplicación de Android para diagnósticos de enfermería utilizando redes neuronales artificiales. Revista Cubana de Enfermería, 36 (2), Article 2. http://revenfermeria.sld.cu/index.php/enf/article/view/3252
Díaz-Muñoz, G. (2020). Metodología del estudio piloto. Revista chilena de radiología, 26 (3), 100-104. https://doi.org/10.4067/S0717-93082020000300100
Echeverría-Ramírez, J. A., & Mazzitelli, C. (2021). A study of the perception of the institutional factors that influence the academic performance of students of the Distance State University of Costa Rica. Revista Electrónica Educare, 25 (2). https://doi.org/10.15359/ree.25-2.18
Ferraces, M. J., Moledo, M. L., Otero, A. G. & Santos, M. A. (2021). Students’ mediator variables in the relationship between family involvement and academic performance: Effects of the styles of involvement. Psicologia Educativa, 27 (1), 85-92. https://doi.org/10.5093/PSED2020A19
Figueroa-Garcia, E., Farias-Cervantes, V. S., Segura-Castruita, M., Andrade-Gonzalez, I., Montero-Cortés, M. I., & Chávez-Rodríguez, A. M. (2021). Using artificial neural networks in prediction of the drying process of foods that are rich in sugars. Revista Mexicana de Ingeniera Quimica, 20 (1), 161-171. https://doi.org/10.24275/rmiq/Sim1403
Foster, R. C. (2020). A generalized framework for classical test theory. Journal of Mathematical Psychology, 96. https://doi.org/10.1016/j.jmp.2020.102330
Foster, R. C. (2021). KR20 and KR21 for Some Nondichotomous Data (It’s Not Just Cronbach’s Alpha). Educational and Psychological Measurement. https://doi.org/10.1177/0013164421992535
González-García, N., Sánchez-García, A. B., Nieto-Librero, A. B., & Galindo-Villardón, M. P. (2019). Actitud y enfoques de aprendizaje en el estudio de la Didáctica General. Una visión multivariante. Revista de Psicodidáctica, 24 (2), 154-162. https://doi.org/10.1016/j.psicod.2019.02.002
González-Velasco, C., Feito-Ruiz, I., González-Fernández, M., Álvarez-Arenal, J.-L. & Sarmiento-Alonso, N. (2021). Does the teaching-learning model based on the flipped classroom improve academic results of students at different educational levels? Revista Complutense de Educacion, 32 (1), 27-39. https://doi.org/10.5209/RCED.67851
Goyes-Peñafiel, P. & Hernandez-Rojas, A. (2021). Double landslide susceptibility assessment based on artificial neural networks and weights of evidence. Boletin de Geologia, 43 (1), 173-191. https://doi.org/10.18273/revbol.v43n1-2021009
Hernández, R. M. (2018). La estrategia didáctica frente a los estilos de aprendizaje en la educación superior. Educación Médica, 19, 227. https://doi.org/10.1016/j.edumed.2017.10.034
Incio, F. A. & Capuñay, D. L. (2020). Liderazgo directivo y desempeño docente en instituciones educativas particulares. Revista Científica Epistemia, 4 (3), 119-128. https://doi.org/10.26495/re.v4i3.1422
Incio, F. A., Capuñay, D. L., Estela, R. O., Delgado, J. A. & Vergara, S. E. (2021). Diseño e implementación de una red neuronal artificial para predecir el rendimiento académico en estudiantes de Ingeniería Civil de la UNIFSLB. Revista Veritas et Scientia, 10 (1), 107-117. https://doi.org/10.47796/ves.v10i1.464
International Business Machines Corporation. (2021). Conceptos básicos de ayuda de CRISP-DM. Conceptos básicos de ayuda de CRISP-DM. https://prod.ibmdocs-production-dal-6099123ce774e592a519d7c33db8265e-0000.us-south.containers.appdomain.cloud/docs/es/spss-modeler/SaaS?topic=dm-crisp-help-overview
Johnson, K. B., Ferguson, D. H., Tempke, R. S. & Nix, A. C. (2021). Application of a Convolutional Neural Network for Wave Mode Identification in a Rotating Detonation Combustor Using High-Speed Imaging. Journal of Thermal Science and Engineering Applications, 13 (6). https://doi.org/10.1115/1.4049868
Lejía, C.-T., Ng, L.-N., Hassan, M. D., Goh, W.-W., Ley, C.-Y. & Ismail, N. (2010). Predicting pre-university students’ mathematics achievement. 8, 299-306. https://doi.org/10.1016/j.sbspro.2010.12.041
López-Aguilar, D. & Álvarez-Pérez, P. R. (2021). Modelo predictivo PLS-SEM sobre intención de abandono académico universitario durante la COVID-19. Revista Complutense de Educación, 32 (3), 451-461. https://doi.org/10.5209/rced.70507
Martins, M. P. G., Migueis, V. L., Fonseca, D. S. B. & Gouveia, P. D. F. (2020). Prediction of academic dropout in a higher education institution using data mining. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, 2020 (E28), 188-203.
Menacho, C. H. (2017). Predicción del rendimiento académico aplicando técnicas de minería de datos. Anales Científicos, 78 (1), 26-33. https://doi.org/10.21704/ac.v78i1.811
Moreira, F., Ferreira, M. J., Pereira, C. S., Gomes, A. S., Collazos, C. & Escudero, D. F. (2019). ECLECTIC as a learning ecosystem for higher education disruption. Universal Access in the Information Society, 18 (3), 615-631. https://doi.org/10.1007/s10209-019-00682-x
Olascoaga, A. C. (2020). Curso de docencia para residentes: Evaluación de un programa. Educación Médica, 21 (3), 187-192. https://doi.org/10.1016/j.edumed.2018.07.010
Pal, J. & Chakrabarty, D. (2020). Assessment of artificial neural network models based on the simulation of groundwater contaminant transport. Hydrogeology Journal, 28 (6), 2039-2055. https://doi.org/10.1007/s10040-020-02180-4
Pizarro, S., Santillán, G., Vilela, J. & Hildebrandt, A. (2021). Factors related to academic performance in Veterinary Medicine students. Revista de Investigaciones Veterinarias del Peru, 32 (1). https://doi.org/10.15381/RIVEP.V32I1.19509
Porras, M. M. & Ortega, F. H. (2021). Procrastination, test anxiety and academic performance on university students. Interdisciplinaria, 38 (2), 243-258. https://doi.org/10.16888/INTERD.2021.38.2.16
Ramos, R. T. & Gómez, N. N. (2021). The influence of the teacher on the motivation, learning strategies, critical thinking and academic performance of high school students in Physical Education. Psychology, Society and Education, 11 (1), 137-150. https://doi.org/10.25115/psye.v11i1.2230
Rodríguez, D. D., Ordoñez, R. E. & Hidalgo-Villota, M. E. (2021). Determinantes del rendimiento académico de la educación media en el departamento de Nariño, Colombia. Lecturas de Economía, 94, 87-126. https://doi.org/10.17533/udea.le.n94a341834
Rodríguez, H. E. D., Castro, M. M. S. & Rosales, M. A. C. (2021). Financial performance and administrative practices in Mexican microenterprises: An analysis with artificial neural networks. Contaduria y Administracion, 64 (3). https://doi.org/10.22201/FCA.24488410E.2018.1622
Sabir, Z., Nisar, K., Raja, M. A. Z., Ibrahim, A. A. B. A., Rodrigues, J. J. P. C., Al-Basyouni, K. S., Mahmoud, S. R. & Rawat, D. B. (2021). Design of Morlet wavelet neural network for solving the higher order singular nonlinear differential equations. Alexandria Engineering Journal, 60 (6), 5935-5947. https://doi.org/10.1016/j.aej.2021.04.001
Sagredo, A. V., Etchepare, G. C., Mendizabal, E. A. & Wilson, C. P. (2021). Academic performance and its relationship with socioemotional variables in chilean students from vulnerable contexts. Educacion XX1, 24 (2), 375-398. https://doi.org/10.5944/educxx1.28269
Şenyurt, M., Ercanlı, İ., Günlü, A., Bolat, F. & Bulut, S. (2020). Artificial neural network models for predicting relationships between diameter at breast height and stump diameter: Crimean pine stands at ÇAKÜ forest. Bosque, 41 (1), 25-34. https://doi.org/10.4067/S0717-92002020000100025
Sosa, M., Ortiz, E. & Cabello, A. (2021). Impact of social lags on the number of deaths and confirmed cases by COVID-19 in Mexico: Artificial neural network analysis employing municipal information. Contaduria y Administracion, 65 (5). https://doi.org/10.22201/fca.24488410e.2020.3020
Wingerter, D. G., de Oliveira Santos, E. G. & Barbosa, I. R. (2020). The use of artificial neural networks to classify the social vulnerability of municipalities in Rio Grande do Norte State, Brazil. Cadernos de Saude Publica, 36 (8). https://doi.org/10.1590/0102-311X00038319
Wunderlich, T. C. & Pehle, C. (2021). Event-based backpropagation can compute exact gradients for spiking neural networks. Scientific Reports, 11 (1). https://doi.org/10.1038/s41598-021-91786-z
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Dulce Lucero Capuñay Sanchez, Fernando Alain Incio Flores, Ronald Omar Estela Urbina, Luis Montenegro Camacho, Jorge Antonio Delgado Soto, Johnny Cueva Valdivia
This work is licensed under a Creative Commons Attribution 4.0 International License.
- The authors retain their copyright but assign to the journal the right of the first publication, with the work registered under the Creative Commons attribution license, which allows third parties to use the published information as long as they mention the authorship of the work and that it was first published in this journal.
- Authors may make other independent or additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as it clearly indicates that the work was first published in this journal.
- Authors are encouraged and advised to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and a greater and faster dissemination of the published work (see The Effect of Open Access).