The formation of students’ mathematical competence through competence-oriented tasks
DOI:
https://doi.org/10.17162/au.v11i4.775Keywords:
Mathematics, competencies, education, algebra, formal science.Abstract
The aim of the article is to reveal the possibilities of the content of linear algebra teaching in the formation of mathematical competence of future mechanical engineers. The implementation of the experimental research involved the use of qualitative and quantitative methods: observations, conversations with teachers of mathematical disciplines, testing, and mathematical processing of research results. Methodological support of the course “Linear Algebra” was prepared, containing a system of competence-oriented tasks. The study was conducted at the Industrial University of Tyumen (Russia). Experimental (86 students) and control (87 students) groups were formed from first and second-year students. In the control groups, training took place according to the traditional method. Statistical analysis of the results obtained when comparing two empirical distributions was carried out using the Pearson χ2 test. As a result of the study, the features of the academic discipline “Linear Algebra” in the formation of mathematical competencies of students of technical universities were identified. An approach to the formulation of a competence-oriented problem was developed. The classification of tasks was carried out by types (algorithmic, research, computational, instrumental, modeling) and levels (reproduction, establishment of connections, reasoning). The results of the scientific and experimental work indicate an increase in the level of mathematics competence of future mechanical engineers and fully confirm the effectiveness of the proposed method of teaching linear algebra.Downloads
References
Akhyadov, E. S. M., Goncharov, V. V., & Makushkin, S. A. (2020). Video marketing in education: attracting applicants using the youtube service. Revista Inclusiones, 7, 387-396. https://revistainclusiones.org/index.php/inclu/article/view/1380
Alcock, L., Ansari, D., Batchelor, S., Bisson, M. J., De Smedt, B., Gilmore, C., & Weber, K. (2016). Challenges in mathematical cognition: A collaboratively-derived research agenda. Journal of Numerical Cognition, 2, 20-41. https://jnc.psychopen.eu/index.php/jnc/article/view/5681
Alpers, B. (2010). Studies on the mathematical expertise of mechanical engineers. Journal of Mathematical Modelling and Application, 1 (3), 2-17. https://doi.org/10.1007/978-94-007-0910-2_44
Anufrieva, N. I., Volkov, L. V., Aralova, E. V., Kolomyts, O. G., & Myagkova, E. V. (2020). Environmental education: nurturing of the humanistic orientation of a personality. Universal Journal of Educational Research, 8 (11), 5529-5535. https://www.hrpub.org/journals/article_info.php?aid=9941
Bamforth, S. E., Robinson, C. R., Croft, A. C., & Crawford, A. (2007). Retention and progression of engineering students with diverse mathematical backgrounds. Teaching Mathematics and its Applications, 26 (4), 156-166. https://doi.org/10.1093/teamat/hrm004
Baturina, R. V. & Khasanova, G. B. (2020). Mathematical training as a means of forming the general scientific competency of economists. Universal Journal of Educational Research, 8 (11), 6116 – 6123. http://dx.doi.org/10.13189/ujer.2020.082247
Beklemisheva, L. A., Petrovich, A. Y., & Chubarov, I. A. (2004). Posobie Collection of Tasks in Analytical Geometry and Linear Algebra: Textbook. Moscow, Russia: Fizmatlit.
Berliner, D. C. (2015). The many facets of PISA. Teachers College Record, 117 (1), 20. https://eric.ed.gov/?id=EJ1056719
Blomhoj, M., & Jensen, T. H. (2003). Developing mathematical modelling competence: conceptual clarification and educational planning. Teaching mathematics and its applications, 22 (3), 123-139. https://doi.org/10.1093/teamat/22.3.123
Bondarenko, N. G., Oleynik, A., Biryukov, V. A., Tarando, E. E., & Malinina, T. B. (2020). Smart city: integration of information and communication technologies. IIOAB Journal, 11 (3), 106–110. https://www.iioab.org/IIOABJ_11.S3_106-110.pdf
Cardella, M. (2008). Which mathematics should we teach engineering students? An empirically grounded case for a broad notion of mathematical thinking. Teaching Mathematics and its Applications, 27 (3), 150-159. https://doi.org/10.1093/teamat/hrn008
Efimov, A. V., & Pospelov, A. S. (2001). Collection of mathematical tasks for technical universities, part 1: Textbook for technical universities. Moscow, Russia: Izdatelstvo Fiziko-matematicheskoi literatury.
Efremenko, A. P, Berezhnoy, D. A., Tsilinko, A. P., Lomakina, T. A., & Solovey, A. I. (2020). Case method in vocational training for future specialists of culture and art. Universal Journal of Educational Research, 8 (9), 3793-3798. https://doi.org/10.13189/ujer.2020.080901
Hasibuan S. A., & Fauzi M. A. (2020). Development of PISA mathematical problem model on the content of change and relationship to measure students mathematical problem-solving ability. International Electronic Journal of Mathematics Education, 15 (2). https://doi.org/10.29333/iejme/6274
Henderson, S., & Broadbridge, P. (2009). Engineering mathematics education in Australia. MSOR Connections, 9 (1), 12-17. https://doi.org/10.11120/msor.2009.09010012
Lavrinenko, T. A., & Mikhno, V. N. (2017). Modern educational technologies and teaching mathematics in higher education. Bulletin of Tver State University, 3, 120-127. https://core.ac.uk/download/pdf/128641771.pdf
Lein, A. E., Jitendra, A. K., & Harwell, M. R. (2020). Effectiveness of mathematical word problem solving interventions for students with learning disabilities and/or mathematics difficulties: a meta-analysis. Journal of Educational Psychology, 112 (7), 1388–1408. https://doi.org/10.1037/edu0000453
Lopez, A. G. (2011). An example of learning based on competences: Use of Maxima in Linear Algebra for Engineers. International Journal for Technology in Mathematics Education 18 (4), 177-181. https://www.researchgate.net/publication/295869239_An_example_of_learning_based_on_competences_Use_of_Maxima_in_Linear_Algebra_for_Engineers
Lutsan, N. I., Struk, A. V., Liubyva, V. V., Kulish, I. D., & Vertuhina, V. N. (2020). The readiness of future specialists of preschool education to creative self-realization in professional activity. Propósitos y Representaciones, 8 (3). http://dx.doi.org/10.20511/pyr2020.v8n3.531.
Mason, J. (2020). Generating worthwhile mathematical tasks in order to sustain and develop mathematical thinking. Sustainability, 12 (4). https://doi.org/10.3390/su12145727
Niss, M. (2003). Quantitative literacy and mathematical competencies. En B. L. Madison & L. A. Steen (Eds.), Quantitative literacy: why numeracy matters for schools and colleges. National Council on Education and the Disciplines.
Novak, E. (2017). Toward a mathematical model of motivation, volition, and performance. Computers & Education, 74, 73-80. https://doi.org/10.1016/j.compedu.2014.01.009
Novitsky, N. (December 11, 2020). Mathematical modeling of hydraulic chains as cyber-physical objects [Rudenko International Conference on Methodological Problems in Reliability Study of Large Energy Systems]. E3S Web of Conferences, Kazan Russia. https://doi.org/10.1051/e3sconf/202021601091
Proskuryakov, I. V. (2005). Collection of tasks in linear algebra. Moscow, Russia: BINOM. Laboratoriya znanii.
Rensaa, R.J., Hogstad, N.M. & Monaghan, J. (2020). Teaching mathematics and its applications, International Journal of the IMA, 39 (4), 296–309. https://doi.org/10.1093/teamat/hraa002
Rosli, R., Goldsby, D., & Capraro, M. M. (2013). Assessing students’ mathematical problem-solving and problem-posing skills. Asian Social Science, 9, 54-60. https://doi.org/10.5539/ass.v9n16p54
Simanjuntak, D., Napitupulu, E. E., & Manullang, M. (2018). The enhancement difference of student mathematical problem solving ability between guided discovery learning model and direct learning model. American Journal of Educational Research, 6 (12), 1688-1692. https://doi.org/10.12691/education-6-12-15
Siregar, N., Asmin, M., & Fauzi, M. A. (2018). The Effect of Problem Based Learning Model on Problem Solving Ability Student. The 3th Annual International Seminar on Transformative Education and Educational Leadership, 200, 464-467. https://doi.org/10.2991/aisteel-18.2018.100
Stefanova, G. P., Krutova, I. A., & Valisheva, A. G. (2011). Innovative approach to developing methods for solving typical professional tasks among future engineers. Alma mater, Bulletin of Higher Education, 8, 48–51. https://almavest.ru/ru/archive/771/2634
Szabo, Z. K., Körtesi, P., Guncaga, J., Szabo, D., & Neag, R. (2020). Examples of problem-solving strategies in mathematics education supporting the sustainability of 21st-century skills. Sustainability, 12. https://doi.org/10.3390/su122310113
Tereshchenko, E. A., Kovalev, V. V., Trofimov, M. S., & Zasseev, D. A. (2020). Legal consciousness as a factor promoting the achievement of educational objectives and the realization of the right to education by individuals and collectives. Revista Tempos e Espaços em Educação, 13 (32). https://doi.org/10.20952/revtee.v13i32.14690
Tovarnichenko, L. V., & Stepkina, M. A. (2015). Innovative techniques of teaching mathematics students of non-core areas of training at the university. Modern problems of science and education, 4, 146. http://www.science-education.ru/ru/article/view?id=20851
Xu, X., Sun, J., Endo, S., Li, Y., Benjamin, S.C., & Yuan, X. (2019). Variational algorithms for linear algebra. Quantum Physics. https://arxiv.org/abs/1909.03898v1
Yarullin, I. F., Bushmeleva, N. A., & Tsyrkun, I. I. (2015). The research competence development of students trained in mathematical direction. Mathematics Education, 10 (3), 137-146. https://www.iejme.com/article/the-research-competence-development-of-students-trained-in-mathematical-direction
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Natalya Vladimirovna Terekhova, Elena Aleksandrovna Zubova
This work is licensed under a Creative Commons Attribution 4.0 International License.
- The authors retain their copyright but assign to the journal the right of the first publication, with the work registered under the Creative Commons attribution license, which allows third parties to use the published information as long as they mention the authorship of the work and that it was first published in this journal.
- Authors may make other independent or additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as it clearly indicates that the work was first published in this journal.
- Authors are encouraged and advised to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and a greater and faster dissemination of the published work (see The Effect of Open Access).