Teaching and learning mathematics in educational institutions using mobile applications: a systematic literature review
DOI:
https://doi.org/10.17162/au.v13i1.1328Keywords:
Teaching-learning, Mathematics, Mobile applications, Methodologies, Systematic literature review.Abstract
This article analyzes the learning of students in the entire field of education and in other branches of science, through the systematic review of the literature (RSL) with the aim of determining the state of the art about the teaching and learning of math in Educational Institutions using Mobile Applications, based on the recommendations of Barbara Kitchenham & Charters (2007) for the review of papers in the years from 2016 to 2021. In the review conducted, some relevant results were obtained: identification of the main areas in which mobile applications are used, to the authors who have published the most research, the papers published according to their chronological distribution (2020 and 2018), to the publication media where the research is reported (Journal and Conference), the topics (as bigramas) most used per year ("primary school", "early childhood" and "mobile learning") and the bibliometric networks of co-authorship worldwide. It was concluded that the selected research papers focus on improving the teaching and learning of students in educational institutions. It is expected that future research will expand the chronological scope of the analyzed papers for a more comprehensive review.Downloads
References
Ahmad, N. I. N., & Junaini, S. N. (2020). Augmented Reality for Learning Mathematics: A Systematic Literature Review. International Journal of Emerging Technologies in Learning, 15 (16), 106–122. https://doi.org/10.3991/ijet.v15i16.14961
Aldon, G., Cusi, A., Schacht, F., & Swidan, O. (2021). Teaching mathematics in a context of lockdown: A study focused on teachers’ praxeologies. Education Sciences, 11 (2), 1–21. https://doi.org/10.3390/educsci11020038
Amasha, M. A., Areed, M. F., Khairy, D., Atawy, S. M., Alkhalaf, S., & Abougalala, R. A. (2021). Development of a Java-based Mobile application for mathematics learning. Education and Information Technologies, 26 (1), 945–964. https://doi.org/10.1007/s10639-020-10287-0
Bai, H. (2019). Preparing Teacher Education Students to Integrate Mobile Learning into Elementary Education. TechTrends, 63 (6), 723–733. https://doi.org/10.1007/s11528-019-00424-z
Baker, E. B. A. (2017). Apps, iPads, and Literacy: Examining the Feasibility of Speech Recognition in a First-Grade Classroom. Reading Research Quarterly, 52 (3), 291–310. https://doi.org/10.1002/rrq.170
Bakri, S. R. B. A., Ling, S. E., Julaihi, N. H. B., Liew, C. Y., & Ling, S. C. (2017). Improving low passing rate in mathematics course at higher learning education: Problem identification and strategies towards development of mobile app. 1st International Conference on Computer and Drone Applications: Ethical Integration of Computer and Drone Technology for Humanity Sustainability, IConDA 2017, 2018-Janua, 77–81. https://doi.org/10.1109/ICONDA.2017.8270403
Barbara Kitchenham, & Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering. https://doi.org/10.1145/1134285.1134500
Bassette, L., Bouck, E., Shurr, J., Park, J., Cremeans, M., Rork, E., Miller, K., & Geiser, S. (2020). A Comparison of Manipulative Use on Mathematics Efficiency in Elementary Students With Autism Spectrum Disorder. Journal of Special Education Technology, 35 (4), 179–190. https://doi.org/10.1177/0162643419854504
Bobis, J., Russo, J., Downton, A., Feng, M., Livy, S., McCormick, M., & Sullivan, P. (2021). Instructional moves that increase chances of engaging all students in learning mathematics. Mathematics, 9 (6), 1–19. https://doi.org/10.3390/MATH9060582
Botzakis, S. (2017). Websites and Apps for Teaching and Learning Mathematics. Journal of Adolescent and Adult Literacy, 60 (5), 597–600. https://doi.org/10.1002/jaal.618
Bouck, E. C., & Sprick, J. (2019). The Virtual-Representational-Abstract Framework to Support Students With Disabilities in Mathematics. Intervention in School and Clinic, 54 (3), 173–180. https://doi.org/10.1177/1053451218767911
Bouck, E. C., Working, C., & Bone, E. (2018). Manipulative Apps to Support Students With Disabilities in Mathematics. Intervention in School and Clinic, 53(3), 177–182. https://doi.org/10.1177/1053451217702115
Bunting, L., af Segerstad, Y. H., & Barendregt, W. (2021). Swedish teachers’ views on the use of personalised learning technologies for teaching children reading in the English classroom. International Journal of Child-Computer Interaction, 27, 100236. https://doi.org/10.1016/j.ijcci.2020.100236
Busto, S., Dumbser, M., & Gaburro, E. (2021). A simple but efficient concept of blended teaching of mathematics for engineering students during the covid-19 pandemic. Education Sciences, 11 (2), 1–24. https://doi.org/10.3390/educsci11020056
Callaghan, R. (2018). Developing Mobile Teaching Practice: A Collaborative Exploration Process. Technology, Knowledge and Learning, 23 (2), 331–350. https://doi.org/10.1007/s10758-017-9319-y
Cukierman, U. R., Aguero, M., Silvestri, S., Gonzalez, M., Drangosch, J., Gonzalez, C., Ferrando, D. P., & Dellepiane, P. (2019). A student-centered approach to learning mathematics and physics in engineering freshmen courses. 2018 World Engineering Education Forum - Global Engineering Deans Council, WEEF-GEDC 2018. https://doi.org/10.1109/WEEF-GEDC.2018.8629733
Cukierman, U. R., Silvestri, S., Drangosch, J., Ferrando, D. P., Aguero, M., Delmonte, R., Corrao, L. G., & Saclier, L. (2018). Bridging the gap between first-year students and Engineering: A novel application of mobile technologies for improving Mathematics and Physics learning. Proceedings - 2017 7th World Engineering Education Forum, WEEF 2017- In Conjunction with: 7th Regional Conference on Engineering Education and Research in Higher Education 2017, RCEE and RHEd 2017, 1st International STEAM Education Conference, STEAMEC 201, 834–838. https://doi.org/10.1109/WEEF.2017.8467127
Dalby, D., & Swan, M. (2019). Using digital technology to enhance formative assessment in mathematics classrooms. British Journal of Educational Technology, 50 (2), 832–845. https://doi.org/10.1111/bjet.12606
De Oliveira, C. D., Pontin De Mattos Fortes, R., & Barbosa, E. F. (2020). Teaching-learning practices and methods for the elderly: Support for pedagogical and accessibility guidelines. Proceedings - Frontiers in Education Conference, FIE, 2020-Octob. https://doi.org/10.1109/FIE44824.2020.9273974
Delacruz, S. (2020). Starting From Scratch (Jr.): Integrating Code Literacy in the Primary Grades. Reading Teacher, 73 (6), 805–812. https://doi.org/10.1002/trtr.1909
Duijzer, C. A. C. G., Shayan, S., Bakker, A., Van der Schaaf, M. F., & Abrahamson, D. (2017). Touchscreen tablets: Coordinating action and perception for mathematical cognition. Frontiers in Psychology, 8 (2), 1–19. https://doi.org/10.3389/fpsyg.2017.00144
Fabian, K., Topping, K. J., & Barron, I. G. (2016). Mobile technology and mathematics: effects on students’ attitudes, engagement, and achievement. Journal of Computers in Education, 3 (1), 77–104. https://doi.org/10.1007/s40692-015-0048-8
Fabian, K., Topping, K. J., & Barron, I. G. (2018). Using mobile technologies for mathematics: effects on student attitudes and achievement. Educational Technology Research and Development, 66 (5), 1119–1139. https://doi.org/10.1007/s11423-018-9580-3
Garcia, C., Felix, J., Esquembre, M., Francisco, W., & Loo, K. (2017). Deployment of physics simulation apps using Easy JavaScript Simulations. 2017 IEEE Global Engineering Education Conference (EDUCON), April, 1093–1096. https://doi.org/10.1109/EDUCON.2017.7942985
Giannakoulas, A., & Xinogalos, S. (2018). A pilot study on the effectiveness and acceptance of an educational game for teaching programming concepts to primary school students. Education and Information Technologies, 23 (5), 2029–2052. https://doi.org/10.1007/s10639-018-9702-x
Gilley, D. P., Root, J. R., & Cox, S. K. (2021). Development of Mathematics and Self-Determination Skills for Young Adults With Extensive Support Needs. Journal of Special Education, 54 (4), 195–204. https://doi.org/10.1177/0022466920902768
Hasani, A., Juansah, D. E., Sari, I. J., & El Islami, R. A. Z. (2021). Conceptual frameworks on how to teach stem concepts in bahasa indonesia subject as integrated learning in grades 1–3 at elementary school in the curriculum 2013 to contribute to sustainability education. In Sustainability (Switzerland), 13 (1), 1–15. https://doi.org/10.3390/su13010173
Hawkins, R. O., Collins, T., Hernan, C., & Flowers, E. (2017). Using Computer-Assisted Instruction to Build Math Fact Fluency: An Implementation Guide. Intervention in School and Clinic, 52 (3), 141–147. https://doi.org/10.1177/1053451216644827
Highfield, K., & Goodwin, K. (2013). Apps for mathematics learning: a review of “educational” apps from the iTunes app store. The 36th Annual Conference of Mathematics Education Research Group of Australasia, 2009, 378–385. https://www.researchonline.mq.edu.au/vital/access/services/Download/mq:30079/DS01
Hilton, A. (2018). Engaging Primary School Students in Mathematics: Can iPads Make a Difference? International Journal of Science and Mathematics Education, 16 (1), 145–165. https://doi.org/10.1007/s10763-016-9771-5
Hoareau, L., Tazouti, Y., Dinet, J., Thomas, A., Luxembourger, C., Hubert, B., Fischer, J. P., & Jarlégan, A. (2020). Co-Designing a New Educational Tablet App for Preschoolers. Computers in the Schools, 37 (4), 234–252. https://doi.org/10.1080/07380569.2020.1830253
Hosszu, A., & Rughiniș, C. (2020). Digital divides in education. An analysis of the Romanian public discourse on distance and online education during the COVID-19 pandemic. Sociologie Romaneasca, 18 (2), 11–39. https://doi.org/10.33788/sr.18.2.1
Hover, A., & Wise, T. (2022). Exploring ways to create 21st century digital learning experiences. Education 3-13, 50 (1), 40–53. https://doi.org/10.1080/03004279.2020.1826993
Hulse, T., Daigle, M., Manzo, D., Braith, L., Harrison, A., & Ottmar, E. (2019). From here to there! Elementary: a game-based approach to developing number sense and early algebraic understanding. Educational Technology Research and Development, 67 (2), 423–441. https://doi.org/10.1007/s11423-019-09653-8
Ishaq, K., Zin, N. A. M., Rosdi, F., Jehanghir, M., Ishaq, S., & Abid, A. (2021). Mobile-Assisted and Gamification-based Language Learning: A Systematic Literature Review. PeerJ Computer Science, 7, 1–57. https://doi.org/10.7717/PEERJ-CS.496
Kaliisa, R., & Picard, M. (2017). A systematic review on mobile learning in higher education: The African perspective. Turkish Online Journal of Educational Technology, 16 (1), 1–18.
Kewalramani, S., Arnott, L., & Dardanou, M. (2020). Technology-integrated pedagogical practices: a look into evidence-based teaching and coherent learning for young children. European Early Childhood Education Research Journal, 28 (2), 163–166. https://doi.org/10.1080/1350293X.2020.1735739
Kinnula, M., & Iivari, N. (2021). Manifesto for children’s genuine participation in digital technology design and making. International Journal of Child-Computer Interaction, 28, 100244. https://doi.org/10.1016/j.ijcci.2020.100244
Klingenberg, O. G., Holkesvik, A. H., & Augestad, L. B. (2020). Digital learning in mathematics for students with severe visual impairment: A systematic review. British Journal of Visual Impairment, 38 (1), 38–57. https://doi.org/10.1177/0264619619876975
Koupritzioti, D., & Xinogalos, S. (2020). PyDiophantus maze game: Play it to learn mathematics or implement it to learn game programming in Python. Education and Information Technologies, 25 (4), 2747–2764. https://doi.org/10.1007/s10639-019-10087-1
Kucirkova, N., Evertsen-Stanghelle, C., Studsrød, I., Jensen, I. B., & Størksen, I. (2020). Lessons for child–computer interaction studies following the research challenges during the Covid-19 pandemic. International Journal of Child-Computer Interaction, 26, 100203. https://doi.org/10.1016/j.ijcci.2020.100203
Kucirkova, N., & Flewitt, R. (2020). The future-gazing potential of digital personalization in young children’s reading: views from education professionals and app designers. Early Child Development and Care, 190 (2), 135–149. https://doi.org/10.1080/03004430.2018.1458718
Lachtar, N., Ibdah, D., & Bacha, A. (2019). The Case for Native Instructions in the Detection of Mobile Ransomware. IEEE Letters of the Computer Society, 2 (2), 16–19. https://doi.org/10.1109/locs.2019.2918091
Laubscher, D. J., Blignaut, A. S., & Nieuwoudt, H. D. (2021). A Mobile Application (App) Based on Realistic Mathematics Education. 88–108. https://doi.org/10.4018/978-1-7998-6940-5.ch005
Litster, K., Moyer-Packenham, P. S., & Reeder, R. (2019). Base-10 Blocks: a study of iPad virtual manipulative affordances across primary-grade levels. Mathematics Education Research Journal, 31 (3), 349–365. https://doi.org/10.1007/s13394-019-00257-2
Liu, C., Zowghi, D., Kearney, M., & Bano, M. (2021). Inquiry-based mobile learning in secondary school science education: A systematic review. Journal of Computer Assisted Learning, 37 (1), 1–23. https://doi.org/10.1111/jcal.12505
Marbán, J. M., Radwan, E., Radwan, A., & Radwan, W. (2021). Primary and secondary students’ usage of digital platforms for mathematics learning during the COVID-19 outbreak: The case of the Gaza strip. Mathematics, 9 (2), 1–21. https://doi.org/10.3390/math9020110
Marklund, L. (2019). Swedish preschool teachers’ perceptions about digital play in a workplace-learning context. Early Years, 42 (2), 1–15. https://doi.org/10.1080/09575146.2019.1658065
Martínez-Valdés, J. A., García-Peñalvo, F. J., & Velázquez-Iturbide, J. Á. (1933). The role of basic mathematics concepts in programming teaching and learning. The Mathematics Teacher, 26 (3), 133–139. https://doi.org/10.1145/3362789.3362933
McGlynn-Stewart, M., Brathwaite, L., Hobman, L., Maguire, N., Mogyorodi, E., & Park, Y. U. (2018). Inclusive Teaching With Digital Technology: Supporting Literacy Learning in Play-Based Kindergartens. LEARNing Landscapes, 11 (1), 199–216. https://doi.org/10.36510/learnland.v11i1.932
Mcglynn-Stewart, M., Maguire, N., & Mogyorodi, E. (2020). Taking it Outside : Engaging in Active, Creative, Outdoor Play with Digital Technology. Canadian Journal of Environmental Education, 23 (2), 31–45.
Milara, I. S., Pitkänen, K., Laru, J., Iwata, M., Orduña, M. C., & Riekki, J. (2020). STEAM in Oulu: Scaffolding the development of a Community of Practice for local educators around STEAM and digital fabrication. International Journal of Child-Computer Interaction, 26, 100197. https://doi.org/10.1016/j.ijcci.2020.100197
Miller, T. (2018). Developing numeracy skills using interactive technology in a play-based learning environment. International Journal of STEM Education, 5 (1). https://doi.org/10.1109/EDUCON.2017.7942985
Minicozzi, L. L. (2018). iPads and pre-service teaching: exploring the use of iPads in k-2 classrooms. International Journal of Information and Learning Technology, 35 (3), 160–180. https://doi.org/10.1108/IJILT-05-2017-0032
Montiel, I., Delgado-Ceballos, J., Ortiz-de-Mandojana, N., & Antolin-Lopez, R. (2020). New Ways of Teaching: Using Technology and Mobile Apps to Educate on Societal Grand Challenges. Journal of Business Ethics, 161 (2), 243–251. https://doi.org/10.1007/s10551-019-04184-x
Mulligan, J., Woolcott, G., Mitchelmore, M., & Davis, B. (2018). Connecting mathematics learning through spatial reasoning. Mathematics Education Research Journal, 30 (1), 77–87. https://doi.org/10.1007/s13394-017-0210-x
Nilsen, M., Lundin, M., Wallerstedt, C., & Pramling, N. (2021). Evolving and re-mediated activities when preschool children play analogue and digital Memory games. Early Years, 41 (2–3), 232–247. https://doi.org/10.1080/09575146.2018.1460803
Outhwaite, L. A., Gulliford, A., & Pitchford, N. J. (2020). Language counts when learning mathematics with interactive apps. British Journal of Educational Technology, 51 (6), 2326–2339. https://doi.org/10.1111/bjet.12912
Peltier, C., Morin, K. L., Bouck, E. C., Lingo, M. E., Pulos, J. M., Scheffler, F. A., Suk, A., Mathews, L. A., Sinclair, T. E., & Deardorff, M. E. (2020). A Meta-Analysis of Single-Case Research Using Mathematics Manipulatives With Students At Risk or Identified With a Disability. Journal of Special Education, 54 (1), 3–15. https://doi.org/10.1177/0022466919844516
Pienimäki, M., Kinnula, M., & Iivari, N. (2021). Finding fun in non-formal technology education. International Journal of Child-Computer Interaction, 29, 100283. https://doi.org/10.1016/j.ijcci.2021.100283
Pinter, G., Felde, I., Mosavi, A., Ghamisi, P., & Gloaguen, R. (2020). COVID-19 pandemic prediction for Hungary; A hybrid machine learning approach. Mathematics, 8 (6). https://doi.org/10.3390/math8060890
Pitchford, N. J., Chigeda, A., & Hubber, P. J. (2019). Interactive apps prevent gender discrepancies in early-grade mathematics in a low-income country in sub-Sahara Africa. Developmental Science, 22 (5), 1–14. https://doi.org/10.1111/desc.12864
Pitchford, N. J., Kamchedzera, E., Hubber, P. J., & Chigeda, A. L. (2018). Interactive apps promote learning of basic mathematics in children with special educational needs and disabilities. Frontiers in Psychology, 9 (3). https://doi.org/10.3389/fpsyg.2018.00262
Pitchford, N. J., & Outhwaite, L. A. (2019). Secondary Benefits to Attentional Processing Through Intervention With an Interactive Maths App. Frontiers in Psychology, 10 (11). https://doi.org/10.3389/fpsyg.2019.02633
Prieto, M. C., Palma, L. O., Tobías, P. J. B., & León, F. J. M. (2019). Student assessment of the use of kahoot in the learning process of science and mathematics. Education Sciences, 9 (1). https://doi.org/10.3390/educsci9010055
Roos, H. (2019). Inclusion in mathematics education: an ideology, a way of teaching, or both? Educational Studies in Mathematics, 100 (1), 25–41. https://doi.org/10.1007/s10649-018-9854-z
Schodde, T., Hoffmann, L., Stange, S., & Kopp, S. (2020). Adapt, Explain, Engage—A Study on How Social Robots Can Scaffold Second-language Learning of Children. ACM Transactions on Human-Robot Interaction, 9 (1), 1–27. https://doi.org/10.1145/3366422
Schueller, A. W. (2020). Phone Sensor Data in the Mathematics Classroom. Primus, 30 (7), 790–801. https://doi.org/10.1080/10511970.2019.1639864
Shin, M., Bryant, D. P., Bryant, B. R., McKenna, J. W., Hou, F., & Ok, M. W. (2017). Virtual Manipulatives: Tools for Teaching Mathematics to Students With Learning Disabilities. Intervention in School and Clinic, 52 (3), 148–153. https://doi.org/10.1177/1053451216644830
Song, Y., & Wen, Y. (2018). Integrating Various Apps on BYOD (Bring Your Own Device) into Seamless Inquiry-Based Learning to Enhance Primary Students’ Science Learning. Journal of Science Education and Technology, 27 (2), 165–176. https://doi.org/10.1007/s10956-017-9715-z
Stacy, S. T., Cartwright, M., Arwood, Z., Canfield, J. P., & Kloos, H. (2017). Addressing the math-practice gap in elementary school: Are tablets a feasible tool for informal math practice? Frontiers in Psychology, 8 (2), 1–12. https://doi.org/10.3389/fpsyg.2017.00179
Stevenson, M. E., & Hedberg, J. G. (2017). Mobilizing learning: a thematic review of apps in K-12 and higher education. Interactive Technology and Smart Education, 14 (2), 126–137. https://doi.org/10.1108/ITSE-02-2017-0017
Strawhacker, A., Lee, M., & Bers, M. U. (2018). Teaching tools, teachers’ rules: exploring the impact of teaching styles on young children’s programming knowledge in ScratchJr. International Journal of Technology and Design Education, 28 (2), 347–376. https://doi.org/10.1007/s10798-017-9400-9
Su, C. H. (2018). Exploring sustainability environment educational design and learning effect evaluation through migration theory: An example of environment educational serious games. Sustainability (Switzerland), 10 (10). https://doi.org/10.3390/su10103363
Svela, A., Nouri, J., Viberg, O., & Zhang, L. (2019). A systematic review of tablet technology in mathematics education. International Journal of Interactive Mobile Technologies, 13 (8), 139–158. https://doi.org/10.3991/ijim.v13i08.10795
Tam, C., Santos, D., & Oliveira, T. (2020). Exploring the influential factors of continuance intention to use mobile Apps: Extending the expectation confirmation model. Information Systems Frontiers, 22 (1), 243–257. https://doi.org/10.1007/s10796-018-9864-5
Tamburri, D. A., Miglierina, M., & Nitto, E. Di. (2020). Cloud applications monitoring: An industrial study. Information and Software Technology, 127 (7). https://doi.org/10.1016/j.infsof.2020.106376
Tavernier, M., & Hu, X. (2020). Emerging Mobile Learning Pedagogy Practices: Using tablets and constructive apps in early childhood education. Educational Media International, 57 (3), 253–270. https://doi.org/10.1080/09523987.2020.1824423
Tokac, U., Novak, E., & Thompson, C. G. (2019). Effects of game-based learning on students’ mathematics achievement: A meta-analysis. Journal of Computer Assisted Learning, 35 (3), 407–420. https://doi.org/10.1111/jcal.12347
Tucker, S. I., Lommatsch, C. W., Moyer-Packenham, P. S., Anderson-Pence, K. L., & Symanzik, J. (2017). Kindergarten children’s interactions with touchscreen mathematics virtual manipulatives: An innovative mixed methods analysis. International Journal of Research in Education and Science, 3 (2), 646–665. https://doi.org/10.21890/ijres.328097
Tucker, S. I., Moyer-Packenham, P. S., Westenskow, A., & Jordan, K. E. (2016). The Complexity of the Affordance–Ability Relationship When Second-Grade Children Interact with Mathematics Virtual Manipulative Apps. Technology, Knowledge and Learning, 21 (3), 341–360. https://doi.org/10.1007/s10758-016-9276-x
Valiente, D., Campello-Vicente, H., Velasco-Sánchez, E., Rodríguez-Mas, F., & Campillo-Davo, N. (2021). Assessing the impact of attendance modality on the learning performance of a course on machines and mechanisms theory. Mathematics, 9 (5), 1–24. https://doi.org/10.3390/math9050558
Venter, M., & Swart, A. J. (2018). Selection and evaluation of mobile mathematical learning applications. IEEE Global Engineering Education Conference, EDUCON, 2018-April, 648–655. https://doi.org/10.1109/EDUCON.2018.8363292
Wang, H., & Zou, Y. (2018). Advancing academic english teaching and learning in china: A meta-analysis. Journal of Language Teaching and Research, 9 (6), 1260–1269. https://doi.org/10.17507/jltr.0906.15
Wang, R., Chen, L., & Solheim, I. (2020). Modeling dyslexic students’ motivation for enhanced learning in E-learning systems. ACM Transactions on Interactive Intelligent Systems, 10 (3). https://doi.org/10.1145/3341197
Willacy, H., & Calder, N. (2017). Making mathematics learning more engaging for students in health schools through the use of apps. Education Sciences, 7 (2). https://doi.org/10.3390/educsci7020048
Xin, J. F., & L. Affrunti, R. (2019). Using iPads in Vocabulary Instruction for English Language Learners. Computers in the Schools, 36 (1), 69–82. https://doi.org/10.1080/07380569.2019.1565888
Xinogalos, S., Satratzemi, M., & Malliarakis, C. (2017). Microworlds, games, animations, mobile apps, puzzle editors and more: What is important for an introductory programming environment? Education and Information Technologies, 22 (1), 145–176. https://doi.org/10.1007/s10639-015-9433-1
Zito, L., Cross, J. L., Brewer, B., Speer, S., Tasota, M., Hamner, E., Johnson, M., Lauwers, T., & Nourbakhsh, I. (2021). Leveraging tangible interfaces in primary school math: Pilot testing of the Owlet math program. International Journal of Child-Computer Interaction, 27, 100222. https://doi.org/10.1016/j.ijcci.2020.100222
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Javier Gamboa-Cruzado, Maday Díaz-Huamán, Julio Castañeda Carranza, Ricardo Gómez Arce, Guillermo Paucar-Carlos, Jorge Nolasco Valenzuela
This work is licensed under a Creative Commons Attribution 4.0 International License.
- The authors retain their copyright but assign to the journal the right of the first publication, with the work registered under the Creative Commons attribution license, which allows third parties to use the published information as long as they mention the authorship of the work and that it was first published in this journal.
- Authors may make other independent or additional contractual arrangements for non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) as long as it clearly indicates that the work was first published in this journal.
- Authors are encouraged and advised to publish their work on the Internet (for example, on institutional or personal pages) before and during the review and publication process, as it can lead to productive exchanges and a greater and faster dissemination of the published work (see The Effect of Open Access).