Language learning using Machine Learning: a systematic review

Authors

DOI:

https://doi.org/10.17162/au.v12i4.1249

Keywords:

language learning process, technology education, machine learning, ML, language acquisition, intelligent retrieval, expert systems.

Abstract

Language learning using machine learning (ML) has become significant, employing techniques and algorithms with the ability to solve text, audio and image translation. The objective of the research is to determine the worldwide advances in language learning using ML in order to support and encourage researchers to undertake further experimental research in this area. The amount of research on language learning and ML requires a systematic review of the literature, limiting the review years between 2016 and 2021. The sources consulted are: Taylor & Francis, IEEE Xplore, ACM Digital Library, ScienceDirect, ProQuest, ARDI y ERIC. The studies initially found were 55237, after applying rigorous exclusion criteria 82 papers were obtained. The results of the review conclude that the most used technique for language learning using ML is support vector machine (SVM), followed by K-means (K-M) and the way the concepts have evolved tend to learning automation. The review gives us an approach to the trends in language learning with ML. In addition, the keywords that present more co-occurrence in the research are “machine learning”, “natural language processing” and “machine translation”.

Downloads

Download data is not yet available.

References

Abonizio, H. Q., de Morais, J. I., Tavares, G. M., & Junior, S. B. (2020). Language-independent fake news detection: English, Portuguese, and Spanish mutual features. Future Internet, 12(5), 1–18. https://doi.org/10.3390/FI12050087

Aleixandre-Benavent, R., Valderrama Zurián, J., & González, G. (2007). El factor de impacto de las revistas científicas: limitaciones e indicadores alternativos. Prof. Inf, 16, 4–11

Allende-Cid, H., Zamora, J., Alfaro-Faccio, P., & Alonso-Sanchez, M. F. (2019). A Machine Learning Approach for the Automatic Classification of Schizophrenic Discourse. IEEE Access, 7 (c), 45544–45553. https://doi.org/10.1109/ACCESS.2019.2908620

Baeza-Yates, R., & Liaghat, Z. (2017). Quality-efficiency trade-offs in machine learning for text processing. Proceedings - 2017 IEEE International Conference on Big Data, Big Data 2017, 2018-January, 897–904. https://doi.org/10.1109/BigData.2017.8258006

Berdanier, C. G. P., Baker, E., Wang, W., & McComb, C. (2019). Opportunities for natural language processing in qualitative engineering education research: Two examples. Proceedings - Frontiers in Education Conference, FIE, 2018-Octob, 1–6. https://doi.org/10.1109/FIE.2018.8658747

Berru-Novoa, B., Gonzalez-Valenzuela, R., & Shiguihara-Juarez, P. (2018). Peruvian sign language recognition using low resolution cameras. Proceedings of the 2018 IEEE 25th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2018. https://doi.org/10.1109/INTERCON.2018.8526408

Bhat, S., Nair, S. S., Kadur, S., & Srikanth H, R. (2019). A Personalised Approach to Adaptive Tutoring using Machine Learning and Natural Language Processing. 2019 IEEE Bombay Section Signature Conference, IBSSC 2019. https://doi.org/10.1109/IBSSC47189.2019.8973062

Boltužić, F., & Šnajder, J. (2020). Structured prediction models for argumentative claim parsing from text. Automatika, 61 (3), 361–370. https://doi.org/10.1080/00051144.2020.1761101

Chandramma, Kumar Pareek, P., Swathi, K., & Shetteppanavar, P. (2017). An efficient machine translation model for Dravidian language. RTEICT 2017 - 2nd IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, Proceedings, 2018. https://doi.org/10.1109/RTEICT.2017.8256970

De Souza, G. A., & Da Costa-Abreu, M. (2020). Automatic offensive language detection from Twitter data using machine learning and feature selection of metadata. Proceedings of the International Joint Conference on Neural Networks. https://doi.org/10.1109/IJCNN48605.2020.9207652

Deshmukh, R. D., & Kiwelekar, A. (2020). Deep Learning Techniques for Part of Speech Tagging by Natural Language Processing. 2nd International Conference on Innovative Mechanisms for Industry Applications, ICIMIA 2020 - Conference Proceedings, Icimia, 76–81. https://doi.org/10.1109/ICIMIA48430.2020.9074941

Dutta, K. K., & Sunny, B. (2021). Machine Learning Techniques for Indian Sign Language Recognition. Macromolecular Symposia, 397 (1), 333–336. https://doi.org/10.1002/masy.202000241

Dwivedi, P., Shraddha, C., Mathews, S., Majumder, S., Madhumathi, R., & Vasundhara, M. R. (2020). Predicting Language Endangerment: A Machine Learning Approach. 2020 11th International Conference on Computing, Communication and Networking Technologies, ICCCNT 2020. https://doi.org/10.1109/ICCCNT49239.2020.9225576

Ekanata, Y., & Budi, I. (2018). Mobile application review classification for the Indonesian language using machine learning approach. 2018 4th International Conference on Computer and Technology Applications, ICCTA 2018, 117–121. https://doi.org/10.1109/CATA.2018.8398667

Elsaid-Moussa, M., Hussein-Mohamed, E., & Hassan-Haggag, M. (2021). Opinion mining: a hybrid framework based on lexicon and machine learning approaches. International Journal of Computers and Applications, 43 (8), 786–794. https://doi.org/10.1080/1206212X.2019.1615250

Gupta, S., Agarwal, M., & Jain, S. (2019). Automated genre classification of books using machine learning and natural language processing. Proceedings of the 9th International Conference On Cloud Computing, Data Science and Engineering, Confluence 2019, 269–272. https://doi.org/10.1109/CONFLUENCE.2019.8776935

HaCohen-Kerner, Y., & Hagege, R. (2017). Language and gender classification of speech files using supervised machine learning methods. Cybernetics and Systems, 48 (6–7), 510–535. https://doi.org/10.1080/01969722.2017.1383654

Hamid, Y., Sugumaran, M., & Journaux, L. (2016). Machine learning techniques for intrusion detection: A comparative analysis. ACM International Conference Proceeding Series, 25-26-Augu, 0–5. https://doi.org/10.1145/2980258.2980378

Hunt, E., Janamsetty, R., Kinares, C., Koh, C., Sanchez, A., Zhan, F., Ozdemir, M., Waseem, S., Yolcu, O., Dahal, B., Zhan, J., Gewali, L., & Oh, P. (2019). Machine learning models for paraphrase identification and its applications on plagiarism detection. Proceedings - 10th IEEE International Conference on Big Knowledge, ICBK 2019, 97–104. https://doi.org/10.1109/ICBK.2019.00021

Innes. (2020). On Machine Learning and Programming Languages 06. December, 2–5. https://mlsys.org/Conferences/doc/2018/37.pdf

Joshi, J., Polepally, S., Kumar, P., Samineni, R., Rahul, S. R., Sumedh, K., Tej, D. G. K., & Rajapriya, V. (2017). Machine learning based cloud integrated farming. ACM International Conference Proceeding Series, 1–6. https://doi.org/10.1145/3036290.3036297

Kang, Y., Cai, Z., Tan, C. W., Huang, Q., & Liu, H. (2020). Natural language processing (NLP) in management research: A literature review. Journal of Management Analytics, 7 (2), 139–172. https://doi.org/10.1080/23270012.2020.1756939

Kitchenham, B. A., & Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering: EBSE Technical Report EBSE-2007-01. School of Computer Science and Mathematics, Keele University. January, 1–57.

Ko, C. Y., & Leu, F. Y. (2021). Examining Successful Attributes for Undergraduate Students by Applying Machine Learning Techniques. IEEE Transactions on Education, 64(1), 50–57. https://doi.org/10.1109/TE.2020.3004596

Korkmaz, C., & Correia, A. P. (2019). A review of research on machine learning in educational technology, Educational Media International, 56 (3), 250–267. https://doi.org/10.1080/09523987.2019.1669875

Kurian, D., Sattari, F., Lefsrud, L., & Ma, Y. (2020). Using machine learning and keyword analysis to analyze incidents and reduce risk in oil sands operations. Safety Science, 130 (6), 104873. https://doi.org/10.1016/j.ssci.2020.104873

Lai, M., Lee, J., Chiu, S., Charm, J., So, W. Y., Yuen, F. P., Kwok, C., Tsoi, J., Lin, Y., & Zee, B. (2020). A machine learning approach for retinal images analysis as an objective screening method for children with autism spectrum disorder. EClinicalMedicine, 28, 100588. https://doi.org/10.1016/j.eclinm.2020.100588

Lavrov, I., & Domashova, J. (2020). Constructor of compositions of machine learning models for solving classification problems. Procedia Computer Science, 169 (2019), 780–786. https://doi.org/10.1016/j.procs.2020.02.165

Le Glaz, A., Haralambous, Y., Kim-Dufor, D.-H., Lenca, P., Billot, R., Ryan, T. C., Marsh, J., DeVylder, J., Walter, M., Berrouiguet, S., & Lemey, C. (2021). Machine Learning and Natural Language Processing in Mental Health: Systematic Review. Journal of Medical Internet Research, 23 (5), e15708. https://doi.org/10.2196/15708

Lee, S. M. (2020). The impact of using machine translation on EFL students’ writing. Computer Assisted Language Learning, 33(3), 157–175. https://doi.org/10.1080/09588221.2018.1553186

Leon-Paredes, G. A., Palomeque-Leon, W. F., Gallegos-Segovia, P. L., Vintimilla-Tapia, P. E., Bravo-Torres, J. F., Barbosa-Santillan, L. I., & Paredes-Pinos, M. M. (2019). Presumptive Detection of Cyberbullying on Twitter through Natural Language Processing and Machine Learning in the Spanish Language. IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2019, 1–7. https://doi.org/10.1109/CHILECON47746.2019.8987684

Lin, Z. (2020). A Methodological Review of Machine Learning in Applied Linguistics. English Language Teaching, 14 (1), 74. https://doi.org/10.5539/elt.v14n1p74

Lu, A. (2020). English vocabulary retrieval and recognition based on FPGA and machine learning. Microprocessors and Microsystems, November, 103422. https://doi.org/10.1016/j.micpro.2020.103422

Lu, D. N., Le, H. Q., & Vu, T. H. (2020). The factors affecting acceptance of e-learning: A machine learning algorithm approach, Education Sciences, 10 (10), 1–13. https://doi.org/10.3390/educsci10100270

McCarthy, S., & McNamara, D. S. (2020). Hierarchical Machine Learning Approaches to Text Difficulty Classification.

Ni, Y., Barzman, D., Bachtel, A., Griffey, M., Osborn, A., & Sorter, M. (2020). Finding warning markers: Leveraging natural language processing and machine learning technologies to detect risk of school violence. International Journal of Medical Informatics, 139 (3). https://doi.org/10.1016/j.ijmedinf.2020.104137

Paul, A., Latif, A. H., Adnan, F. A., & Rahman, R. M. (2019). Focused domain contextual ai chatbot framework for resource poor languages. Journal of Information and Telecommunication, 3 (2), 248–269. https://doi.org/10.1080/24751839.2018.1558378

Portugal, I., Alencar, P., & Cowan, D. (2018). The use of machine learning algorithms in recommender systems: A systematic review. Expert Systems with Applications, 97, 205–227. https://doi.org/10.1016/j.eswa.2017.12.020

Pradhan, T., Bhansali, R., Chandnani, Di., & Pangaonkar, A. (2020). Analysis of Personality Traits using Natural Language Processing and Deep Learning. Proceedings of the 2nd International Conference on Inventive Research in Computing Applications, ICIRCA 2020, 457–461. https://doi.org/10.1109/ICIRCA48905.2020.9183090

Qin, Y. (2019). Machine learning based taxonomy and analysis of English learners’ translation errors. International Journal of Computer-Assisted Language Learning and Teaching, 9 (3), 68–83. https://doi.org/10.4018/IJCALLT.2019070105

Ranggadara, I., Sari, Y. S., Dwiasnati, S., Prihandi, I., & Sfenrianto. (2020). A Review of Implementation and Obstacles in Predictive Machine Learning Model at Educational Institutions. Journal of Physics: Conference Series, 1477 (3). https://doi.org/10.1088/1742-6596/1477/3/032019

Rennie, J. P., Zhang, M., Hawkins, E., Bathelt, J., & Astle, D. E. (2020). Mapping differential responses to cognitive training using machine learning. Developmental Science, 23 (4), 1–15. https://doi.org/10.1111/desc.12868

Rosero-Montalvo, P. D., Godoy-Trujillo, P., Flores-Bosmediano, E., Carrascal-Garcia, J., Otero-Potosi, S., Benitez-Pereira, H., & Peluffo-Ordonez, D. H. (2018). Sign Language Recognition Based on Intelligent Glove Using Machine Learning Techniques. 2018 IEEE 3rd Ecuador Technical Chapters Meeting, ETCM 2018, 5–9. https://doi.org/10.1109/ETCM.2018.8580268

Shanmugalingam, K., & Sumathipala, S. (2019). Language identification at word level in Sinhala-English code-mixed social media text. Proceedings - IEEE International Research Conference on Smart Computing and Systems Engineering, SCSE 2019, 113–118. https://doi.org/10.23919/SCSE.2019.8842795

Smith, B. I., Chimedza, C., & Bührmann, J. H. (2020). Global and Individual Treatment Effects Using Machine Learning Methods. International Journal of Artificial Intelligence in Education, 30 (3), 431–458. https://doi.org/10.1007/s40593-020-00203-5

Smitha, N., & Bharath, R. (2020). Performance Comparison of Machine Learning Classifiers for Fake News Detection. Proceedings of the 2nd International Conference on Inventive Research in Computing Applications, ICIRCA 2020, 696–700. https://doi.org/10.1109/ICIRCA48905.2020.9183072

Spicer, J., & Sanborn, A. N. (2019). What does the mind learn? A comparison of human and machine learning representations. Current Opinion in Neurobiology, 55, 97–102. https://doi.org/10.1016/j.conb.2019.02.004

Ullmann, T. D. (2019). Automated Analysis of Reflection in Writing: Validating Machine Learning Approaches. International Journal of Artificial Intelligence in Education, 29 (2), 217–257. https://doi.org/10.1007/s40593-019-00174-2

Venkatesan, H., Varun Venkatasubramanian, T., & Sangeetha, J. (2018). Automatic Language Identification using Machine learning Techniques. Proceedings of the 3rd International Conference on Communication and Electronics Systems, ICCES 2018, Icces, 583–588. https://doi.org/10.1109/CESYS.2018.8724070

Wang, P., Fan, E., & Wang, P. (2021). Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recognition Letters, 141, 61–67. https://doi.org/10.1016/j.patrec.2020.07.042

Published

2022-09-07

How to Cite

Gamboa-Cruzado, J. ., Huamani-Jeri, J., Najarro-Buitron, A. ., Hidalgo Sánchez, A. ., Daga Chaca, M. ., & Horna Zegarra, I. . (2022). Language learning using Machine Learning: a systematic review. Apuntes Universitarios, 12(4), 321–345. https://doi.org/10.17162/au.v12i4.1249