Aprendizaje de idiomas usando Machine Learning: una revisión sistemática
DOI:
https://doi.org/10.17162/au.v12i4.1249Palabras clave:
proceso de aprendizaje de idiomas, educación tecnológica, machine learning, adquisición de idiomas, recuperación inteligente, sistemas expertos.Resumen
El aprendizaje de idiomas mediante uso de Machine Learning (ML) ha tomado significancia, empleando técnicas y algoritmos con la capacidad de resolver traducción de texto, audio e imágenes. En ese contexto, el objetivo de la investigación es determinar los avances a nivel mundial acerca del aprendizaje de idiomas usando ML con la finalidad de apoyar y animar a los investigadores a emprender nuevas investigaciones experimentales al respecto. La cantidad de investigaciones del aprendizaje de idiomas y ML requiere una revisión sistemática de la literatura, limitando los años de revisión entre el 2016 y el 2021. Las fuentes consultadas son: Taylor & Francis, IEEE Xplore, ACM Digital Library, ScienceDirect, ProQuest, ARDI y ERIC. Los estudios encontrados inicialmente fueron de 55237, luego de aplicar rigurosos criterios de exclusión se obtuvieron 82 artículos. Los resultados de la revisión concluyen que la técnica más utilizada para el aprendizaje de idiomas mediante ML es Support Vector Machine (SVM), seguido de K-means (K-M) y la forma en que han evolucionado los conceptos tienden a la automatización del aprendizaje. La revisión ofrece un acercamiento a las tendencias en el aprendizaje de idiomas con ML, además que las keywords que presentan más coocurrencia en las investigaciones son “machine learning”, “natural lenguaje processing” y “machine translation”.Descargas
Citas
Abonizio, H. Q., de Morais, J. I., Tavares, G. M., & Junior, S. B. (2020). Language-independent fake news detection: English, Portuguese, and Spanish mutual features. Future Internet, 12(5), 1–18. https://doi.org/10.3390/FI12050087
Aleixandre-Benavent, R., Valderrama Zurián, J., & González, G. (2007). El factor de impacto de las revistas científicas: limitaciones e indicadores alternativos. Prof. Inf, 16, 4–11
Allende-Cid, H., Zamora, J., Alfaro-Faccio, P., & Alonso-Sanchez, M. F. (2019). A Machine Learning Approach for the Automatic Classification of Schizophrenic Discourse. IEEE Access, 7 (c), 45544–45553. https://doi.org/10.1109/ACCESS.2019.2908620
Baeza-Yates, R., & Liaghat, Z. (2017). Quality-efficiency trade-offs in machine learning for text processing. Proceedings - 2017 IEEE International Conference on Big Data, Big Data 2017, 2018-January, 897–904. https://doi.org/10.1109/BigData.2017.8258006
Berdanier, C. G. P., Baker, E., Wang, W., & McComb, C. (2019). Opportunities for natural language processing in qualitative engineering education research: Two examples. Proceedings - Frontiers in Education Conference, FIE, 2018-Octob, 1–6. https://doi.org/10.1109/FIE.2018.8658747
Berru-Novoa, B., Gonzalez-Valenzuela, R., & Shiguihara-Juarez, P. (2018). Peruvian sign language recognition using low resolution cameras. Proceedings of the 2018 IEEE 25th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2018. https://doi.org/10.1109/INTERCON.2018.8526408
Bhat, S., Nair, S. S., Kadur, S., & Srikanth H, R. (2019). A Personalised Approach to Adaptive Tutoring using Machine Learning and Natural Language Processing. 2019 IEEE Bombay Section Signature Conference, IBSSC 2019. https://doi.org/10.1109/IBSSC47189.2019.8973062
Boltužić, F., & Šnajder, J. (2020). Structured prediction models for argumentative claim parsing from text. Automatika, 61 (3), 361–370. https://doi.org/10.1080/00051144.2020.1761101
Chandramma, Kumar Pareek, P., Swathi, K., & Shetteppanavar, P. (2017). An efficient machine translation model for Dravidian language. RTEICT 2017 - 2nd IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, Proceedings, 2018. https://doi.org/10.1109/RTEICT.2017.8256970
De Souza, G. A., & Da Costa-Abreu, M. (2020). Automatic offensive language detection from Twitter data using machine learning and feature selection of metadata. Proceedings of the International Joint Conference on Neural Networks. https://doi.org/10.1109/IJCNN48605.2020.9207652
Deshmukh, R. D., & Kiwelekar, A. (2020). Deep Learning Techniques for Part of Speech Tagging by Natural Language Processing. 2nd International Conference on Innovative Mechanisms for Industry Applications, ICIMIA 2020 - Conference Proceedings, Icimia, 76–81. https://doi.org/10.1109/ICIMIA48430.2020.9074941
Dutta, K. K., & Sunny, B. (2021). Machine Learning Techniques for Indian Sign Language Recognition. Macromolecular Symposia, 397 (1), 333–336. https://doi.org/10.1002/masy.202000241
Dwivedi, P., Shraddha, C., Mathews, S., Majumder, S., Madhumathi, R., & Vasundhara, M. R. (2020). Predicting Language Endangerment: A Machine Learning Approach. 2020 11th International Conference on Computing, Communication and Networking Technologies, ICCCNT 2020. https://doi.org/10.1109/ICCCNT49239.2020.9225576
Ekanata, Y., & Budi, I. (2018). Mobile application review classification for the Indonesian language using machine learning approach. 2018 4th International Conference on Computer and Technology Applications, ICCTA 2018, 117–121. https://doi.org/10.1109/CATA.2018.8398667
Elsaid-Moussa, M., Hussein-Mohamed, E., & Hassan-Haggag, M. (2021). Opinion mining: a hybrid framework based on lexicon and machine learning approaches. International Journal of Computers and Applications, 43 (8), 786–794. https://doi.org/10.1080/1206212X.2019.1615250
Gupta, S., Agarwal, M., & Jain, S. (2019). Automated genre classification of books using machine learning and natural language processing. Proceedings of the 9th International Conference On Cloud Computing, Data Science and Engineering, Confluence 2019, 269–272. https://doi.org/10.1109/CONFLUENCE.2019.8776935
HaCohen-Kerner, Y., & Hagege, R. (2017). Language and gender classification of speech files using supervised machine learning methods. Cybernetics and Systems, 48 (6–7), 510–535. https://doi.org/10.1080/01969722.2017.1383654
Hamid, Y., Sugumaran, M., & Journaux, L. (2016). Machine learning techniques for intrusion detection: A comparative analysis. ACM International Conference Proceeding Series, 25-26-Augu, 0–5. https://doi.org/10.1145/2980258.2980378
Hunt, E., Janamsetty, R., Kinares, C., Koh, C., Sanchez, A., Zhan, F., Ozdemir, M., Waseem, S., Yolcu, O., Dahal, B., Zhan, J., Gewali, L., & Oh, P. (2019). Machine learning models for paraphrase identification and its applications on plagiarism detection. Proceedings - 10th IEEE International Conference on Big Knowledge, ICBK 2019, 97–104. https://doi.org/10.1109/ICBK.2019.00021
Innes. (2020). On Machine Learning and Programming Languages 06. December, 2–5. https://mlsys.org/Conferences/doc/2018/37.pdf
Joshi, J., Polepally, S., Kumar, P., Samineni, R., Rahul, S. R., Sumedh, K., Tej, D. G. K., & Rajapriya, V. (2017). Machine learning based cloud integrated farming. ACM International Conference Proceeding Series, 1–6. https://doi.org/10.1145/3036290.3036297
Kang, Y., Cai, Z., Tan, C. W., Huang, Q., & Liu, H. (2020). Natural language processing (NLP) in management research: A literature review. Journal of Management Analytics, 7 (2), 139–172. https://doi.org/10.1080/23270012.2020.1756939
Kitchenham, B. A., & Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering: EBSE Technical Report EBSE-2007-01. School of Computer Science and Mathematics, Keele University. January, 1–57.
Ko, C. Y., & Leu, F. Y. (2021). Examining Successful Attributes for Undergraduate Students by Applying Machine Learning Techniques. IEEE Transactions on Education, 64(1), 50–57. https://doi.org/10.1109/TE.2020.3004596
Korkmaz, C., & Correia, A. P. (2019). A review of research on machine learning in educational technology, Educational Media International, 56 (3), 250–267. https://doi.org/10.1080/09523987.2019.1669875
Kurian, D., Sattari, F., Lefsrud, L., & Ma, Y. (2020). Using machine learning and keyword analysis to analyze incidents and reduce risk in oil sands operations. Safety Science, 130 (6), 104873. https://doi.org/10.1016/j.ssci.2020.104873
Lai, M., Lee, J., Chiu, S., Charm, J., So, W. Y., Yuen, F. P., Kwok, C., Tsoi, J., Lin, Y., & Zee, B. (2020). A machine learning approach for retinal images analysis as an objective screening method for children with autism spectrum disorder. EClinicalMedicine, 28, 100588. https://doi.org/10.1016/j.eclinm.2020.100588
Lavrov, I., & Domashova, J. (2020). Constructor of compositions of machine learning models for solving classification problems. Procedia Computer Science, 169 (2019), 780–786. https://doi.org/10.1016/j.procs.2020.02.165
Le Glaz, A., Haralambous, Y., Kim-Dufor, D.-H., Lenca, P., Billot, R., Ryan, T. C., Marsh, J., DeVylder, J., Walter, M., Berrouiguet, S., & Lemey, C. (2021). Machine Learning and Natural Language Processing in Mental Health: Systematic Review. Journal of Medical Internet Research, 23 (5), e15708. https://doi.org/10.2196/15708
Lee, S. M. (2020). The impact of using machine translation on EFL students’ writing. Computer Assisted Language Learning, 33(3), 157–175. https://doi.org/10.1080/09588221.2018.1553186
Leon-Paredes, G. A., Palomeque-Leon, W. F., Gallegos-Segovia, P. L., Vintimilla-Tapia, P. E., Bravo-Torres, J. F., Barbosa-Santillan, L. I., & Paredes-Pinos, M. M. (2019). Presumptive Detection of Cyberbullying on Twitter through Natural Language Processing and Machine Learning in the Spanish Language. IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2019, 1–7. https://doi.org/10.1109/CHILECON47746.2019.8987684
Lin, Z. (2020). A Methodological Review of Machine Learning in Applied Linguistics. English Language Teaching, 14 (1), 74. https://doi.org/10.5539/elt.v14n1p74
Lu, A. (2020). English vocabulary retrieval and recognition based on FPGA and machine learning. Microprocessors and Microsystems, November, 103422. https://doi.org/10.1016/j.micpro.2020.103422
Lu, D. N., Le, H. Q., & Vu, T. H. (2020). The factors affecting acceptance of e-learning: A machine learning algorithm approach, Education Sciences, 10 (10), 1–13. https://doi.org/10.3390/educsci10100270
McCarthy, S., & McNamara, D. S. (2020). Hierarchical Machine Learning Approaches to Text Difficulty Classification.
Ni, Y., Barzman, D., Bachtel, A., Griffey, M., Osborn, A., & Sorter, M. (2020). Finding warning markers: Leveraging natural language processing and machine learning technologies to detect risk of school violence. International Journal of Medical Informatics, 139 (3). https://doi.org/10.1016/j.ijmedinf.2020.104137
Paul, A., Latif, A. H., Adnan, F. A., & Rahman, R. M. (2019). Focused domain contextual ai chatbot framework for resource poor languages. Journal of Information and Telecommunication, 3 (2), 248–269. https://doi.org/10.1080/24751839.2018.1558378
Portugal, I., Alencar, P., & Cowan, D. (2018). The use of machine learning algorithms in recommender systems: A systematic review. Expert Systems with Applications, 97, 205–227. https://doi.org/10.1016/j.eswa.2017.12.020
Pradhan, T., Bhansali, R., Chandnani, Di., & Pangaonkar, A. (2020). Analysis of Personality Traits using Natural Language Processing and Deep Learning. Proceedings of the 2nd International Conference on Inventive Research in Computing Applications, ICIRCA 2020, 457–461. https://doi.org/10.1109/ICIRCA48905.2020.9183090
Qin, Y. (2019). Machine learning based taxonomy and analysis of English learners’ translation errors. International Journal of Computer-Assisted Language Learning and Teaching, 9 (3), 68–83. https://doi.org/10.4018/IJCALLT.2019070105
Ranggadara, I., Sari, Y. S., Dwiasnati, S., Prihandi, I., & Sfenrianto. (2020). A Review of Implementation and Obstacles in Predictive Machine Learning Model at Educational Institutions. Journal of Physics: Conference Series, 1477 (3). https://doi.org/10.1088/1742-6596/1477/3/032019
Rennie, J. P., Zhang, M., Hawkins, E., Bathelt, J., & Astle, D. E. (2020). Mapping differential responses to cognitive training using machine learning. Developmental Science, 23 (4), 1–15. https://doi.org/10.1111/desc.12868
Rosero-Montalvo, P. D., Godoy-Trujillo, P., Flores-Bosmediano, E., Carrascal-Garcia, J., Otero-Potosi, S., Benitez-Pereira, H., & Peluffo-Ordonez, D. H. (2018). Sign Language Recognition Based on Intelligent Glove Using Machine Learning Techniques. 2018 IEEE 3rd Ecuador Technical Chapters Meeting, ETCM 2018, 5–9. https://doi.org/10.1109/ETCM.2018.8580268
Shanmugalingam, K., & Sumathipala, S. (2019). Language identification at word level in Sinhala-English code-mixed social media text. Proceedings - IEEE International Research Conference on Smart Computing and Systems Engineering, SCSE 2019, 113–118. https://doi.org/10.23919/SCSE.2019.8842795
Smith, B. I., Chimedza, C., & Bührmann, J. H. (2020). Global and Individual Treatment Effects Using Machine Learning Methods. International Journal of Artificial Intelligence in Education, 30 (3), 431–458. https://doi.org/10.1007/s40593-020-00203-5
Smitha, N., & Bharath, R. (2020). Performance Comparison of Machine Learning Classifiers for Fake News Detection. Proceedings of the 2nd International Conference on Inventive Research in Computing Applications, ICIRCA 2020, 696–700. https://doi.org/10.1109/ICIRCA48905.2020.9183072
Spicer, J., & Sanborn, A. N. (2019). What does the mind learn? A comparison of human and machine learning representations. Current Opinion in Neurobiology, 55, 97–102. https://doi.org/10.1016/j.conb.2019.02.004
Ullmann, T. D. (2019). Automated Analysis of Reflection in Writing: Validating Machine Learning Approaches. International Journal of Artificial Intelligence in Education, 29 (2), 217–257. https://doi.org/10.1007/s40593-019-00174-2
Venkatesan, H., Varun Venkatasubramanian, T., & Sangeetha, J. (2018). Automatic Language Identification using Machine learning Techniques. Proceedings of the 3rd International Conference on Communication and Electronics Systems, ICCES 2018, Icces, 583–588. https://doi.org/10.1109/CESYS.2018.8724070
Wang, P., Fan, E., & Wang, P. (2021). Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recognition Letters, 141, 61–67. https://doi.org/10.1016/j.patrec.2020.07.042
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Javier Gamboa Cruzado
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
1. Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (veaThe Effect of Open Access).