La naturaleza de la influencia y el grado de confianza en la información sobre la pandemia entre los estudiantes de la generación Z

Autores/as

DOI:

https://doi.org/10.17162/au.v11i4.774

Palabras clave:

Generación Z, pandemia COVID-19, información, confianza, inteligencia artificial, digitalización.

Resumen

El artículo examina la influencia y el grado de confianza en la información sobre la COVID 19 entre los estudiantes de la Generación Z en universidades rusas y eslovacas. Se utilizaron como métodos empíricos una encuesta sociológica con metodología Likert, una entrevista en profundidad y un grupo focal. El estudio se realizó de forma remota utilizando Google Form, el servicio VoIP Skype y una plataforma de conferencias en la nube: Zoom. El estudio reveló que los jóvenes rusos y eslovacos de la Generación Z son contradictorios con cualquier información: los estudiantes rusos encontraron una contradicción sobre la credibilidad de las estadísticas de pandemias y la utilidad de la información de COVID 19 en los medios; Los estudiantes eslovacos tienden a creer que la información al respecto es inverosímil, mientras que la mayoría de los encuestados eslovacos en este estudio expresaron confianza en la información sobre la pandemia. Al comparar los agregados, se revelaron ciertas similitudes: existe una significancia estadística entre las características factoriales y efectivas con una correlación positiva alta y muy alta. Los resultados obtenidos pueden ayudar a desarrollar opiniones sobre la naturaleza del impacto y el grado de confianza en la información sobre la pandemia de COVID 19 entre representantes de diferentes generaciones.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abubakar, A. M., Behravesh, E., Rezapouraghdam, H, & Yildiz, S. B. (2019). Applying artificial intelligence technique to predict knowledge hiding behavior. International Journal of Information Management, 49, 45-57. https://doi.org/10.1016/j.ijinfomgt.2019.02.006

Alegre-Martínez, A., Martínez-Martínez, M. I., & Alfonso-Sanchez, J. L. (2020). Transforming YouTube into a valid source of knowledge for Anatomy students. 6th International Conference on Higher Education Advances (HEAd’20). Universitat Politecnica de Val`encia, Val`encia, 2020, 293-300. http://headconf.org/head20/wp-content/uploads/pdfs/11044.pdf

Barinov, E. A. (2020). Coronavirus: impact on the economy and financial markets. Entrepreneur’s Guide, 13 (2), 111–118. https://doi.org/10.24182/2073-9885-2020-13-2-111-118

Bartik, T. J., & Hershbein, B. J. (2020). Coronavirus and the economy. Employment Research, 27 (2), 1–12. https://research.upjohn.org/cgi/viewcontent.cgi?article=1293&context=empl_research

Brounéus, K. (2011). In-depth Interviewing: The process, skill and ethics of interviews in peace research. In book: Understanding Peace Research: Methods and Challenges. London, New York: Routledge.

Burrell, L. (2019). Artificial intelligence brings out the worst and the best in us. MIT. Sloan Management Review, 60 (2). https://sloanreview.mit.edu/article/artificial-intelligence-brings-out-the-worst-and-the-best-in-us/

Cha, Y. J., Baek, S., Ahn, G., Lee, H., Lee, B., & Shin, J. (2020). Compensating for the loss of human distinctiveness: The use of social creativity under human–machine comparisons. Computers in Human Behavior, 103, 80-90. https://doi.org/10.1016/j.chb.2019.08.027

Demchenko, T. S., Karácsony, P., Vinichenko, M. V., Demchenko, M. V., & Melnichuk, A. V. (2018). Youth involvement in social control of the implementation of the youth personnel policy in the company management system. Revista Espacios, 38 (21), 8. https://www.revistaespacios.com/a18v39n21/a18v39n21p08.pdf

DiMattio, M. J. K., & Hudacek, S. S. (2020). Educating generation Z: Psychosocial dimensions of the clinical learning environment that predict student satisfaction. Nurse Education in Practice, 49. https://doi.org/10.1016/j.nepr.2020.102901

Frolova E. V., Medvedeva N. V., Kabanova E. E., Kurbakova S. N., & Vinichenko M. V. (2016). Social partnership in Russia: prerequisites, problems and trends. Journal of Advanced Research in Law and Economics, 2 (16), 221-228. https://journals.aserspublishing.eu/jarle/article/view/228

Grenčíková, A., & Vojtovič, S. (2017). Relationship of generations X, Y, Z with new communication technologies. Problems and Perspectives in Management, 15 (2-3), 557-563. https://doi.org/10.21511/ppm.15(si).2017.09

Hogan, M. (2020). From Times Square to Eyre Square: hackathons as authentic learning for information systems students. 6th International Conference on Higher Education Advances (HEAd’20). Universitat Politecnica de Val`encia, 301-308. https://doi.org/10.4995/HEAd20.2020.11046

Howe, N. & Strauss, W. (1992). Generations: The History of America's Future, 1584 to 2069. New York: William Morrow.

International Monetary Fund (IMF). (2020). Limiting the economic fallout of the coronavirus with large targeted policies. https://blogs.imf.org/2020/03/09/limiting-the-economic-fallout-of-the-coronavirus-with-large-targeted-policies/?utm_medium=email&utm_source=govdelivery

Kadnevskiy, V. M., & Shirshova, T. A. (2014). Carl Pearson's Contribution to the Development of Pedagogical Measurement Theory. Pedagogical diagnostics, 3, 3-14. https://cyberleninka.ru/article/n/vklad-karla-pirsona-v-razvitie-teorii-pedagogicheskih-izmereniy

Lerchenfeldt, S., Attardi, S. M., Pratt, R. L., Sawarynski, K. E., & Taylor, T. A. H. (2020). Twelve tips for interfacing with the new generation of medical students: iGen. Medical Teacher. https://doi.org/10.1080/0142159X.2020.1845305

Levinson, A. G., & Stuchevskaya, O. I. (2003). Focus groups: the evolution of the method (review of the discussion at the ESOMAR conference). Monitoring of public opinion: economic and social changes, 1 (63), 46-55. http://ecsocman.hse.ru/data/388/973/1219/06-levinson-46-55.pdf

Matraeva, A. D., Rybakova, M. V., Vinichenko, M. V., Oseev, A. A., & Ljapunova, N. V. (2020). Development of creativity of students in higher educational institutions: assessment of students and experts. Universal Journal of Educational Research, 8 (1), 8-16. https://doi.org/10.13189/ujer.2020.080102

Mendez-Reguera, A., & López-Cabrera, M. V. (2020). Engaging my Gen Z class: teaching with memes. Medical Science Educator, 30 (4), 1357–1358. https://doi.org/10.1007/s40670-020-01078-w

Mouton, M., & Grange, I. R. (2020). Scientific discourse: can our first-year students express themselves in science? 6th International Conference on Higher Education Advances (HEAd’20). Universitat Politecnica de Val`encia, 579-586. http://dx.doi.org/10.4995/HEAd20.2020.11110

Nikiporets-Takigawa, G. (2009). The language of the Russian diaspora in Japan. Questions of linguistics, 1, 50-62. https://www.elibrary.ru/download/elibrary_11685878_90475900.pdf

OECD (2020). Coronavirus (COVID-19): SME Policy Responses. https://read.oecd-ilibrary.org/view/?ref=119_119680-di6h3qgi4x&title=Covid-19_SME_Policy_Responses

Ozhiganova, E. M. (2015). The theory of generations by N. Howe and W. Strauss. Possibilities of practical application. Business education in the knowledge economy, 1 (1), 94–97. http://dx.doi.org/10.18184/2079-4665.2016.7.3.150.159

Psychogios, A., & Prouska, R. (2019). Managing People in Small and Medium Enterprises in Turbulent Contexts. London: Routledge.

Rensis L., Sydney R., & Gardner M. (1934). A Simple and Reliable Method of Scoring the Thurstone Attitude Scales, The Journal of Social Psychology, 5(2), 228-238. https://doi.org/10.1080/00224545.1934.9919450

Reyes, A., Galvan, R., Jr. Navarro, A., Velásquez, M., Soriano, D. R., Cabuso, A. L., David, J. R., Lacson, M. L., Manansala, N. T., & Tiongco, R. E. (2020). Across generations: defining pedagogical characteristics of generation X, y, and Z allied health teachers using Q-methodology. Medical Science Educator, 30 (4), 1541-1549. https://doi.org/10.1007/s40670-020-01043-7

Shi, Y. (2019). The impact of artificial intelligence on the accounting industry. International conference on cyber security intelligence and analytics. Advances in Intelligent Systems and Computing, 928, 971-978. https://link.springer.com/chapter/10.1007/978-3-030-15235-2_129

Tong, Z., Chen, H., Deng, X., & Li, K. (2020). A scheduling scheme in the cloud computing environment using deep Q-learning. Information Sciences, 512, 1170-1191. https://doi.org/10.1016/j.ins.2019.10.035

Verma, R. & Bandi, S. (2020). Challenges of artificial intelligence in human resource management in Indian IT sector. XXI Annual International Conference Proceedings; January 2020. https://www.internationalconference.in/XXI_AIC/TS5E/MsRichaVerma.pdf

Vinichenko, M. V., Rybakova, M. V., Сhulanova, O. L., & Makushkin, S. A. (2020). The social environment changes under the influence of artificial intelligence the views of orthodox clergy and parishioners. European Journal of Science and Theology, 16 (5), 57-68. http://www.ejst.tuiasi.ro/Files/84/5_Vinichenko%20et%20al.pdf

Vizcaya-Moreno, M. F., & Pérez-Canaveras, R. M. (2020). Social media used and teaching methods preferred by generation Z students in the nursing clinical learning environment: a cross-sectional research study. International Journal of Environmental Research and Public Health, 17 (21). https://doi.org/10.3390/ijerph17218267

Zimmermann, K. F., Karabulut, G., Huseyin-Bilgin, M., & Cansin-Doker, A. (2020). Inter‐country distancing, globalization and the coronavirus pandemic. The World Economy. https://doi.org/10.1111/twec.12969

Publicado

2021-07-11

Cómo citar

V. Vinichenko, M. ., L. Сhulanova O., V. Ljapunova, N. ., A. Makushkin, S. ., & N. Amozova, L. . (2021). La naturaleza de la influencia y el grado de confianza en la información sobre la pandemia entre los estudiantes de la generación Z. Apuntes Universitarios, 11(4), 296 - 309. https://doi.org/10.17162/au.v11i4.774