Mejorar la comprensión de los alumnos mediante el método POE basado en el debate

Autores/as

DOI:

https://doi.org/10.17162/au.v14i1.1555

Palabras clave:

Método predecir-observar-explicar, Concepto erróneo, Educación científica, Máquinas

Resumen

Resumen El método Predecir-Observar-Explicar (POE) se destaca como un método eficaz para superar conceptos erróneos en la comprensión humana. Este enfoque se caracteriza por su flexibilidad y variabilidad. Los investigadores han creado una versión modificada del POE que se basa en la discusión y, por lo tanto, se denomina "POE basado en discusión" (abreviado POE-DE). La investigación actual tiene como objetivo examinar el efecto de este método de enseñanza mediante la revisión del éxito académico de los estudiantes y la corrección de conceptos erróneos. En el estudio participaron un total de 63 alumnos de octavo grado (de entre 12 y 14 años). 32 alumnos formaron parte del grupo experimental que participó en cursos con actividades basadas en POE-DE. Los 31 restantes representaron el grupo de control con actividades docentes acordes con el plan de estudios de ciencias actual. El tema de la unidad fue Máquinas Simples. Se empleó la Prueba de Rendimiento Académico de Máquinas Simples (AAT) para medir el cambio en el rendimiento académico de los estudiantes. Se administró la Prueba Conceptual de Máquinas Simples (SMCT) de dos niveles para determinar los conceptos erróneos de los estudiantes y observar si habían sido rectificados. Según los datos estadísticos, las actividades docentes basadas en POE-DE tuvieron un impacto sustancial tanto en la tasa de éxito académico como en las puntuaciones SMCT de los estudiantes.  

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdullah, M. N. S., Mat Nayan, N. A., & Mohamad Hussin, F. (2017). A study on addressing students’ misconceptions about condensation using the Predict-Discuss-Explain-Observe-Discuss-Explain (PDEODE) strategy. In Karpudewan, M., Md Zain, A., Chandrasegaran, A. (Eds.), Overcoming students’ misconceptions in science. Springer. https://doi.org/10.1007/978-981-10-3437-4_4

Adadan, E., & Savasci, F. (2012). An analysis of 16–17-year-old students’ understanding of solution chemistry concepts using a two-tier diagnostic instrument. International Journal of Science Education, 34(4), 513–544. https://doi.org/10.1080/09500693.2011.636084

Adebayo, F., & Olufunke, B. T. (2015). Generative and predict-observe-explain instructional strategies: Towards enhancing basic science practical skills of lower primary school pupils. International Journal of Elementary Education, 4(4), 86–92. https://doi.org/10.11648/j.ijeedu.20150404.12

Akarsu, A. H. (2018). Predict-observe-explain (POE) applications in the teaching of social studies. [Unpublished doctoral thesis] Recep Tayyip Erdoğan University.

Alabdulaziz, M. S. (2022). The effect of using PDEODE teaching strategy supported by the e-learning environment in teaching mathematics for developing the conceptual understanding and problem-solving skills among primary stage students. Eurasia Journal of Mathematics, Science and Technology Education, 18(5), em2109. https://doi.org/10.29333/ejmste/12019

Ardillani, S. P., & Sutama, S. (2022). Perbedaan Hasil Belajar IPA Siswa dengan Menggunakan Strategi Pembelajaran PDEODE dan ARCS di Kelas IV. Jurnal Basicedu, 6(2), 2597–2605. https://doi.org/10.31004/basicedu.v6i2.2413

Arfiani, Y. (2017). The comparison of the Predict-Observe-Explain (POE) learning model using experimental methods and demonstration methods in improving students understanding of physics concepts in temperature and heat. Unnes Science Education Journal, 6(1), 1490–1495.

Asghar, A., Huang, Y. S., Elliott, K., & Skelling, Y. (2019). Exploring secondary students’ alternative conceptions about engineering design technology. Education Sciences, 9(1), 45. https://doi.org/10.3390/educsci9010045

Asterhan, C. S., & Dotan, A. (2018). Feedback that corrects and contrasts students’ erroneous solutions with expert ones improves expository instruction for conceptual change. Instructional Science, 46(3), 337–355. https://doi.org/10.1007/s11251-017-9441-1

Astiti, D. T., Ibrahim, M., & Hariyono, E. (2020). Application of POE (predict-observe-explain) learning strategies to reduce students’ misconceptions in science subjects in elementary school. International Journal of Innovative Science and Research Technology, 5(7), 437–445. https://doi.org/10.38124/IJISRT20JUL478

Atasoy, Ş., Tekbıyık, A., & Gülay, A. (2013). Beşinci sınıf öğrencilerinin ses kavramını anlamaları üzerine kavram karikatürlerinin etkisi. Journal of Turkish Science Education, 10(1), 176-196.

Aykutlu, I., & Şen, A. İ. (2012). Üç Aşamalı Test, Kavram Haritası ve Analoji Kullanılarak Lise Öğrencilerinin Elektrik Akımı KonusundakiKavram Yanılgılarının Belirlenmesi. Eğitim ve Bilim, 37(166).

Ayvacı, H. Ş. (2013). Investigating the effectiveness of predict-observe-explain strategy on teaching photo electricity topic. Journal of Baltic Science Education, 12(5), 548. https://doi.org/10.33225/jbse/13.12.548

Barış, Ç. (2022). The effect of the ‘Predict-Observe-Explain (POE)’ strategy in teaching photosynthesis and respiration concepts to pre-service science teachers, Journal of Biological Education. https://doi.org/10.1080/00219266.2022.2047097

Banawi, A., Sopandi, W., Kadarohman, A., & Solehuddin, M. (2019). Prospective primary school teachers’ conception change on states of matter and their changes through Predict-Observe-Explain strategy. International Journal of Instruction, 12(3), 359–374. https://doi.org/10.29333/iji.2019.12322a

Bodner, G. M. (1986). Constructivism: A theory of knowledge. Journal of Chemical Education, 63(10), 873–878. https://doi.org/10.1021/ed063p873

Brown, D. E., & Clement, J. (1987, July). Misconceptions concerning Newton’s law of action and reaction: The underestimated importance of the third law. In Proceedings of the Second International Seminar: A Misconceptions and Educational Strategies in Science and Mechanics, 3, 39–53.

Büyüköztürk, Ş., Kılıç Çakmak, E., Akgün, Ö. E., Karadeniz, Ş., & Demirel, F. (2012). Bilimsel Araştırma Yöntemleri. Pegem Akademi Yayıncılık, Ankara.

Çalış, D. (2019). The effect of project-based environmental education supported by estimation, observation and explanation on the attitudes, behaviors and achievements of secondary school 8th grade students. [Master Thesis]. Gazi University Institute of Educational Sciences, Ankara.

Case, M. J., & Fraser, D. M. (1999). An investigation into chemical engineering students’ understanding of the mole and the use of concrete activities to promote conceptual change. International Journal of Science Education, 21(12), 1237–1249. https://doi.org/10.1080/095006999290048

Chan, E., & Unsworth, L. (2011). Image–language interaction in online reading environments: challenges for students’ reading comprehension. The Australian Educational Researcher, 38, 181-202. https://doi.org/10.1007/s13384-011-0023-y

Chi, M. T. (2005). Commonsense conceptions of emergent processes: Why some misconceptions are robust. The Journal of the Learning Sciences, 14(2), 161–199. https://doi.org/10.1207/s15327809jls1402_1

Chi, M. T. (2008). Three types of conceptual change: Belief revision, mental model transformation, and categorical shift. In S. Vosniadou (Ed.), International handbook of research on conceptual change, pp. 61, 82.

Chuang, S. (2021). The applications of constructivist learning theory and social learning theory on adult continuous development. Performance Improvement, 60(3), 6–14. https://doi.org/10.1002/pfi.21963

Cortina, J. M. (1993). What is coefficient alpha? An examination of theory and applications. Journal of Applied Psychology, 78(1), 98. https://doi.org/10.1037/0021-9010.78.1.98

Coştu, B., Ayas, A., & Niaz, M. (2010). Promoting conceptual change in first year students’ understanding of evaporation. Chemistry Education Research and Practice, 11(1), 5–16. https://doi.org/10.1039/C001041N

Coştu, B., Ayas, A., & Niaz, M. (2012). Investigating the effectiveness of a POE-based teaching activity on students’ understanding of condensation. Instructional Science, 40(1), 47–67. https://doi.org/10.1007/s11251-011-9169-2

Coştu, B., Ayas, A., Niaz, M., Ünal, S., & Calik, M. (2007). Facilitating conceptual change in students’ understanding of boiling concept. Journal of Science Education and Technology, 16, 524–536. https://doi.org/10.1007/s10956-007-9079-x

Coştu, F. (2021) “Investigation of effectiveness of the predict-explain-observe-discuss-explain based laboratory activities on pre-service science teachers' achievement, conceptual understanding and science process skills.” Ph. D. Thesis, Marmara University.

Coştu, F., & Bayram, H. (2021). Tartışmalarla Zenginleştirilmiş Tahmin Et-Gözle-Açıkla (TGA) Destekli Fen Laboratuvar Uygulamalarının Öğretmen Adaylarının Akademik Başarılarına Etkisi. Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 18(1), 1161–1190. https://doi.org/10.33711/yyuefd.959827

Criado Garcia-Legaz, M., & García Carmona, A. (2011). Investigando las máquinas y artefactos. Díada Editora.

Demircioğlu, H. (2017). Effect of PDEODE teaching strategy on Turkish students’ conceptual understanding: Particulate nature of matter. Journal of Education and Training Studies, 5(7), 78–90. https://doi.org/10.11114/jets.v5i7.2389

Diani, R., Yuberti, Y., Anggereni, S., Utami, G. N., Iqbal, A., & Kurniawati, I. (2020, June). ECIRR (Elicit, Confront, Identify, Resolve, Reinforce) learning model with the pictorial riddle method: is it effective in reducing physics misconceptions? Journal of Physics: Conference Series, 1572(1), 012020. https://doi.org/10.1088/1742-6596/1572/1/012020

Di Sessa, A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10, 105–225. https://doi.org/10.1080/07370008.1985.9649008

Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671–688. https://doi.org/10.1080/09500690305016

Fay, B. (1996). Contemporary philosophy of social science: A multicultural approach (Vol. 1). Cambridge University Press.

Fuadi, F. N., Sopandi, W., Priscylio, G., Hamdu, G., & Mustikasari, L. (2020, April). Students’ conceptual changes on the air pressure learning using Predict-Observe-Explain strategy. In Elementary School Forum (Mimbar Sekolah Dasar) (Vol. 7, No. 1, pp. 70–85). Indonesia University of Education. https://doi.org/10.17509/mimbar-sd.v7i1.22457

Garcia Carmona, A., & Criado García-Legaz, A. M. (2013). Teaching energy in 6-12 aged pupils: An approach from the curricular field of machines. Enseñanza de las Ciencias, 31(3), 87–102. https://doi.org/10.5565/rev/ec/v31n3.772

Garmston, R., & Wellman, B. (1994). Insights from constructivist learning-theory. Educational Leadership, 51(7), 84-85.

Garnett, P. J., & Treagust, D. F. (1990). Implications of research of students’ understanding of electrochemistry for improving science curricula and classroom practise. International Journal of Science Education, 12, 147–156. https://doi.org/10.1080/0950069900120203

Genç, G. (2008). “Elementary 6th Grade Students' Understanding Levels and Misconceptions about Force and Motion” M. Sc. Thesis, Atatürk University, Erzurum.

Gil‐Perez, D., & Carrascosa, J. (1990). What to do about science “misconceptions.” Science Education, 74(5), 531–540. https://doi.org/10.1002/sce.3730740504

Hilario, J. S. (2015). The use of Predict-Observe-Explain-Explore (POEE) as a new teaching strategy in general chemistry-laboratory. International Journal of Education and Research, 3(2), 37–48. http://www.ijern.com/journal/2015/February-2015/04.pdf

Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations fort the twenty-first century. Science Education, 88(1), 28–54. https://doi.org/10.1002/sce.10106

Ilma, S., Al-Muhdhar, M. H. I., Rohman, F., & Saptasar, M. (2022). Promote collaboration skills during the COVID-19 pandemic through Predict-Observe-Explain-based Project (POEP) learning. Journal of Biological Education Indonesia (Jurnal Pendidikan Biologi Indonesia), 8(1), 32–39. https://doi.org/10.22219/jpbi.v8i1.17622

Indriyani, R., Sitompul, S. S., & Mursyid, S. (2021). Remediation of Students' Misconceptions About Vibration Using the Labinapp Assisted PDEODE Learning Model in Middle School. Jurnal Pendidikan dan Pembelajaran Khatulistiwa, 10(2). http://dx.doi.org/10.26418/jppk.v10i2.44873

İzzet, K., Avcı, D. E., & Karaca, D. (2012). Pre-service science teachers’ misconceptions about Work topic. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 31(31), 27–39.

Karamustafaoğlu, S., & Mamlok-Naaman, R. (2015). Understanding electrochemistry concepts using the predict-observe-explain strategy. Eurasia Journal of Mathematics, Science and Technology Education, 11(5), 923–936. https://doi.org/10.12973/eurasia.2015.1364a

Karataş, F. Ö., Köse, S., & ve Coştu, B. (2003). Two-tier tests used to identify student misconceptions and understanding levels. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 13(1), 54-69

Kibirige, I., Osodo, J., & Tlala, K. M. (2014). The effect of predict-observe-explain strategy on learners’ misconceptions about dissolved salts. Mediterranean Journal of Social Sciences, 5(4), 300–300. https://doi.org/10.5901/mjss.2014.v5n4p300

King, C. J. H. (2010). An analysis of misconceptions in science textbooks: Earth science in England and Wales. International Journal of Science Education, 32(5), 565–601. https://doi.org/10.1080/09500690902721681

Kolari, S., Viskarı, E. L., & Savander-Ranne, C. (2005). Improving student learning in an environmental engineering program with a research study project. International Journal of Engineering Education, 21(4), 702–711.

Labudde, P., Reif, F., & Quinn, L. (1988). Facilitation of scientific concept learning by interpretation procedures and diagnosis. International Journal of Science Education, 10(1), 81–98. https://doi.org/10.1080/0950069880100108

Lehrer, R., & Schauble, L. (1998). Reasoning about structure and function: Children’s conceptions of gears. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 35(1), 3–25. https://doi.org/10.1002/(SICI)1098-2736(199801)35:1<3::AID-TEA2>3.0.CO;2-X

Li, X., Li, Y., & Wang, W. (2023). Long-lasting conceptual change in science education. Science & Education, 32, 123–168. https://doi.org/10.1007/s11191-021-00288-x

Lin, S. W. (2004). Development and application of a two-tier diagnostic test for high school students’ understanding of flowering plant growth and development. International Journal of Science and Mathematics Education, 2, 175–199. https://doi.org/10.1007/s10763-004-6484-y

Lombardi, D., Sinatra, G. M., & Nussbaum, E. M. (2013). Plausibility reappraisals and shifts in middle school students’ climate change conceptions. Learning and Instruction, 27, 50–62. https://doi.org/10.1016/j.learninstruc.2013.03.001

Maltese, A. V., & Tai, R. H. (2010). Eyeballs in the fridge: Sources of early interest in science. International Journal of Science Education, 32(5), 669–685. https://doi.org/10.1080/09500690902792385

Matthews, P. S. C. (1997). Problems with Piagetian constructivism. Science & Education, 6, 105–119. https://doi.org/10.1023/A:1008622526815

Meneses, A., Escobar, J. P., & Véliz, S. (2018). The effects of multimodal texts on science reading comprehension in Chilean fifth-graders: text scaffolding and comprehension skills. International Journal of Science Education, 40(18), 2226–2244. https://doi.org/10.1080/09500693.2018.1527472

Van der Meij, J., & de Jong, T. (2006). Supporting students' learning with multiple representations in a dynamic simulation-based learning environment. Learning and Instruction, 16(3), 199–212. https://doi.org/10.1016/j.learninstruc.2006.03.007

Monteiro, A., Nóbrega, C., Abrantes, I., & Gomes, C. (2012). Diagnosing Portuguese students’ misconceptions about the mineral concept. International Journal of Science Education 34(17), 2705–2726. https://doi.org/10.1080/09500693.2012.731617

Nadelson, L. S., Heddy, B. C., Jones, S., Taasoobshirazi, G., & Johnson, M. (2018). Conceptual change in science teaching and learning: Introducing the dynamic model of conceptual change. International Journal of Educational Psychology, 7(2), 151–195. https://doi.org/10.17583/ijep.2018.3349

Nalkiran, T., & Karamustafaoğlu, S. (2020). Prediction-observation-explanation (POE) method and its efficiency in teaching “work, energy, power” concepts. International Journal of Assessment Tools in Education, 7(3), 497–521.

Norbury, J. W. (2006). Working with simple machines. Physics Education, 41(6), 546. https://doi.org/10.1088/0031-9120/41/6/010

Odom, A. L., & Barrow, L. H. (1995). Development and application of a two‐tier diagnostic test measuring college biology students’ understanding of diffusion and osmosis after a course of instruction. Journal of Research in Science Teaching, 32(1), 45–61. https://doi.org/10.1002/tea.3660320106

Özkan, Ö., Muştu E. (2018). “Achievement Test Development for 8th Grade Simple Machines Unit: A Study of Validity and Reliability”, Hitit Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 11(1), 737–754. https://doi.org/10.17218/hititsosbil.332294

Özsoy, S. (2020). “Investigating the effect of materials supported with POE (Prediction-Observation-Explanation) method on high school 10th grade students attitudes and achievements.” M. Sc.Thesis, Hacettepe University, Ankara. https://doi.org/10.51460/baebd.773364

Piaget, J. (1970). Piaget’s Theory. In Carmichael’s manual of child psychology (Vol. 1. 3rd Ed.). John Wiley and Sons.

Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211–227. https://doi.org/10.1002/sce.3730660207

Potvin, P., Skelling-Desmeules, Y., & Sy, O. (2015). Exploring secondary students’ conceptions about fire using a two-tier, true/false, easy-to-use diagnostic test. Journal of Education in Science, Environment and Health, 1(2), 63–78. https://doi.org/10.21891/jeseh.99647

Ros, G., Rey, A. F., Calonge, A., & López-Carrillo, M. D. (2022). The design of a teaching-learning sequence on simple machines in elementary education and its benefit on creativity and self-regulation. Eurasia Journal of Mathematics, Science and Technology Education, 18(1), em2066. https://doi.org/10.29333/ejmste/11487

Rothman, K. J. (2014). Six persistent research misconceptions. Journal of General Internal Medicine, 29, 1060–1064. https://doi.org/10.1007/s11606-013-2755-z

Samsudin, A., Cahyani, P. B., Purwanto, Rusdiana, D., Efendi, R., Aminudin. A. H., & Coştu, B (2021). Development of a multitier open-ended work and energy instrument (MOWEI) using Rasch analysis to identify students’ misconceptions. Cypriot Journal of Educational Science, 16(1), 16–31. https://doi.org/10.18844/cjes.v16i1.5504

Sandoval, J. (1995). Teaching in Subject Matter Areas: Science. Annual Review Of Psychology, 46(1), 355–374.

Saputri, R. A. (2021). The analysis of natural science learning misconceptions on force, motion, and energy materials in elementary schools. International Journal of Social Service and Research (IJSSR), 1(4), 418–423. https://doi.org/10.46799/ijssr.v1i4.6

Schunk, D. H. (2012). Social cognitive theory. American Psychological Association.

Siswaningsih, W., Firman, H., & Khoirunnisa, A. (2017, February). Development of two-tier diagnostic test pictorial-based for identifying high school students misconceptions on the mole concept. Journal of Physics: Conference Series, 812(1), 012117. https://doi.org/10.1088/1742-6596/812/1/012117

Smith III, J. P., DiSessa, A. A., & Roschelle, J. (1994). Misconceptions reconceived: A constructivist analysis of knowledge in transition. The Journal of the Learning Sciences, 3(2), 115–163.

Soeharto, S., Csapó, B., Sarimanah, E., Dewi, F. I., & Sabri, T. (2019). A review of students’ common misconceptions in science and their diagnostic assessment tools. Jurnal Pendidikan IPA Indonesia, 8(2), 247–266. https://doi.org/10.15294/jpii.v8i2.18649

Solak, B. (2021). “The Use of Flipped Learning Model in Science Lessons: Interaction of Matter with Heat” M.Sc. Thesis, Yıldız Teknik University, İstanbul.

Supatmi, S., Setiawan, A., & Rahmawati, Y. (2019). Students’ misconceptions of acid-base titration assessments using a two-tier multiple-choice diagnostic test. African Journal of Chemical Education, 9(1).

Tavşancıl, E. (2010). Tutumların ölçülmesi ve SPSS ile veri analizi. Ankara. Nobel Yayınevi.

Tetik, S. (2019) “The effect of teaching the topic of liquids in 9.grade chemistry course with the 5E model and the POE technique (Prediction-observation-explanation) on the success of students.” M.Sc. Thesis, Marmara University, İstanbul.

Tippett, C. D. (2016). What recent research on diagrams suggests about learning with rather than learning from visual representations in science. International Journal of Science Education, 38(5), 725–746. https://doi.org/10.1080/09500693.2016.1158435

Unsworth, L. (2014). Multiliteracies and Metalanguage:: Describing Image/Text Relations as a Resource for Negotiating Multimodal Texts. In Handbook of research on new literacies (pp. 377-406). Routledge.

White, R.T., & Gunstone, R.F. (1992). Probing Understanding. South Africa: Graphicraft Ltd.

Williams, J. M., & Tolmie, A. (2000). Conceptual change in biology: Group interaction and the understanding of inheritance. British Journal of Developmental Psychology, 18(4), 625-649.

Wulandari, T. S. H., Amin, M., Zubaidah, S., & IAM, M. H. (2017). Students’ critical thinking improvement through “PDEODE” and “STAD” combination in the nutrition and health lecture. International Journal of Evaluation and Research in Education, 6(2), 110–117. https://doi.org/10.11591/ijere.v6i2.7589

Yağbasan, R. ve Gülçiçek, Ç. (2003). Identifying the Characteristics of Misconceptions in Science Teaching. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 13(1), 102-120.

Yavuz, S., & Çelik, G. (2013). Sınıf öğretmenliği öğrencilerinin gazlar konusundaki kavram yanılgılarına tahmin et-gözle-açıkla tekniğinin etkisi. Karaelmas Eğitim Bilimleri Dergisi, 1(1), 1-20.

Yuberti, Y., Suryani, Y., & Kurniawati, I. (2020). Four-tier diagnostic test with certainty of response index to identify misconception in physics. Indonesian Journal of Science and Mathematics Education, 3(2), 245–253. https://doi.org/10.24042/ijsme.v3i2.6061

Yürük, N., & Çakir, Ö. S. (2000). Detection of misconceptions about respiration with and without oxygen in high school students. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 18(18).

Zukerman, J. T. (1994). Problem solvers’ conceptions about osmosis. The American Biology Teacher, 56, 22–25. https://doi.org/10.2307/4449737

Descargas

Publicado

2024-05-10

Cómo citar

Sıriş, A. B., & COŞTU, B. (2024). Mejorar la comprensión de los alumnos mediante el método POE basado en el debate. Apuntes Universitarios, 14(1), 68–86. https://doi.org/10.17162/au.v14i1.1555