Nivel de dificultad de las representaciones multimodales utilizadas por los profesores de ciencias de alumnos superdotados


  • M. Davut Gül Tokat Gazisomanpasa University
  • Bayram Costu Yıldız Technical University


Palabras clave:

Alumnos superdotados, Formación docente, Multimodalidad, Representaciones


En vista de la tendencia de los estudiantes superdotados a experimentar desinterés por los conceptos comunes y explicaciones demasiado simplificadas, junto con su inclinación hacia materiales de aprendizaje intelectualmente desafiantes, este estudio tiene como objetivo averiguar cómo los profesores de ciencias responden a estas necesidades únicas de aprendizaje por medio de representaciones multimodales. Para ello, el estudio investigó el nivel de dificultad de estas representaciones con respecto a las relaciones intersemióticas. El presente estudio es una investigación cualitativa que incluye el Análisis Sistémico Funcional Multimodal del Discurso (SF-MDA). Los datos obtenidos de representaciones multimodales -318 representaciones de todos los diferentes grados (5º, 6º, 7º y 8º)- fueron analizados de acuerdo con el marco analítico desarrollado en este estudio con respecto al enfoque SF-MDA. Los resultados mostraron que los profesores generalmente utilizan formas primitivas de representaciones multimodales. El número de formas avanzadas de representaciones multimodales es mínimo. Se llegó a la conclusión de que es necesario organizar programas de capacitación docente para dotar a los docentes de los conocimientos y habilidades necesarios para elegir y diseñar el nivel superior de representaciones multimodales para que satisfagan las necesidades educativas de los estudiantes superdotados.


Los datos de descargas todavía no están disponibles.


Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16 (3), 183-198.

Airey, J., & Linder, C. (2009). A disciplinary discourse perspective on university science learning: Achieving fluency in a critical constellation of modes. Journal of Research in Science Teaching, 46 (1), 27–49.

Akcay, H., Kapici, H. O., & Akcay, B. (2020). Analysis of the representations in Turkish middle school science textbooks from 2002 to 2017. Participatory Educational Research, 7(3), 192.

Andersen, M. F., & Munksby, N. (2018). Didactical Design Principles to Apply When Introducing Student-Generated Digital Multimodal Representations in the Science Classroom. Designs for Learning, 10 (1), 112-122. DOI: 10.16993/dfl.100

Batchelor, K. (2018). “My story came to life!”: How multimodality can inspire revision in writing. Gifted Child Today, 41(3), 136-148.

Bateman, J. A. (2017). Triangulating transmediality: A multimodal semiotic framework relating media, modes and genres. Discourse, Context & Media, 20, 160-174.

Bezemer, J., & Jewitt, C. (2010). Multimodal analysis: Key issues. Research Methods in Linguistics, 180.

Bezemer, J., & Kress, G. (2008). Writing in multimodal texts: A social semiotic account of designs for learning. Written Communication, 25 (2), 166-195.

Bildiren, A. (2018). Opinions of primary school teachers on the definition, identification and education of gifted children. International Journal of Eurasia Social Sciences, 9(33), 1363-1380.

Chan, E. (2011). Integrating visual and verbal meaning in multimodal text comprehension: Towards a model of intermodal relations. Semiotic margins. Meanings in Multimodalities, 144-167. .

Chan, E., & Unsworth, L. (2011). Image–language interaction in online reading environments: challenges for students’ reading comprehension. The Australian Educational Researcher, 38(2), 181-202.

Cheng, M. M., Danielsson, K., & Lin, A. M. (2020). Resolving puzzling phenomena by the simple particle model: examining thematic patterns of multimodal learning and teaching. Learning: Research and Practice, 6(1), 70-87.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37-46.

Daly, A., & Unsworth, L. (2011). Analysis and comprehension of multimodal texts. Australian Journal of Language and Literacy, 34 (1), 61.

Danielsson, K., & Selander, S. (2016). Reading Multimodal Texts for Learning A Model for Cultivating Multimodal Literacy. Designs for Learning, 8 (1), 25-36.

Djonov, E. (2005). Analysing the organisation of information in websites: From hypermedia design to systemic functional hypermedia discourse analysis. University of New South Wales.

Eilam, B., & Gilbert, J. K. (2014). The significance of visual representations in the teaching of science. In Science teachers’ use of visual representations (pp. 3-28). Springer, Cham.

Evagorou, M., Erduran, S., & Mäntylä, T. (2015). The role of visual representations in scientific practices: from conceptual understanding and knowledge generation to ‘seeing’how science works. International Journal of STEM Education, 2(1), 1-13.

Fisher, O., & Oyserman, D. (2017). Assessing interpretations of experienced ease and difficulty as motivational constructs. Motivation Science, 3(2), 133.

Gill, T. (2002). Visual and verbal playmates: An exploration of visual and verbalmodalities in children’s picture books. University of Sydney.

Güçyeter, Ş., Kanlı, E., Özyaprak, M., & Leana-Taşcılar, M. Z. (2017). Serving gifted children in developmental and threshold countries — Turkey. Cogent Education, 4(1).

Halliday, M. A. K. (1978). Language as social semiotic: The social interpretation of language and meaning. Hodder Arnold. https://doi:10.4304/tpls.4.6.1238-1242

Halliday, M. A. K. (2004). Appendix: The Functional Basis of Language. Class, codes, and control, 343-366.

Halliday, M. A. K., &Matthiessen, C. M. I. M. (2014). Halliday’s introduction to functional grammar (4th ed.). Routledge.

He, Q., & Forey, G. (2018). Meaning-making in a secondary science classroom: A systemic functional multimodal discourse analysis. In K. S.Tang & K. Danielsson (Eds.), Global developments in literacy research for science education (pp. 183–202). Springer.

Hiippala, T. (2014). Multimodal genre analysis. In S. Norris & C. D. Maier (Eds.), Interactions, images and texts: A reader in multimodality (pp. 111–125). De Gruyter

Jewitt, C. (2003). Re-thinking assessment: Multimodality, literacy and computer- mediated learning. Assessment in Education: Principles, Policy & Practice, 10(1), 83-102.

Jewitt, C. (2008). Multimodality and literacy in school classrooms. Review of Research in Education, 32(1), 241–267.

Kaplan, S. (2009). Myth 9: There is a single curriculum for the gifted. Gifted Child Quarterly, 53(4), 257.

Keles, N. (2016). Investigating the effect of science writing heuristic approach on students’ learning of multimodal representations across 4th to 8th grade levels. Iowa State University.

Kind, P. M., Angell, C., & Guttersrud, Ø. (2017). Teaching and Learning Representations in Upper Secondary Physics. In Multiple Representations in Physics Education (pp. 25- 45). Springer.

Kocaman, B. . (2022). Investigation of the effects of STEM activities on STEM attitude in gifted students. Apuntes Universitarios, 13(1), 1–29.

Kress, G. R. (2003). Literacy in the new media age. Psychology Press.

Kress, G. (2005). Before writing: Rethinking the paths to literacy. Routledge.

Kress, G. (2009). Assessment in the perspective of a social semiotic theory of multimodal teaching andlearning. In C. Wyatt-Smith & J. J. Cumming (Eds.), Educational assessment in the 21st century (pp. 19–41). Springer.

Kress, G., & Bezemer, J. (2009). Writing in a multimodal world of representation. The SAGE handbook of writing development, 167-181.

Kress, G., Jewitt, C., Ogborn, J., & Tsatsarelis, C. (2001). Multimodal teaching and learning: The rhetorics of the science classroom. Continuum.

Kress, G., & Selander, S. (2012). Multimodal design, learning and cultures of recognition. The Internet and Higher Education, 15(4), 265-268.

Kress, G., & Van Leeuwen, T. (2002). Colour as a semiotic mode: notes for a grammar of colour. Visual communication, 1(3), 343-368.

Lemke, J. L. (1990). Talking science: Language, learning, and values. Ablex Publishing Corporation.

Little, C. A. (2012). Curriculum as motivation for gifted students. Psychology in the Schools, 49(7), 695-705.

Lim, F.V. (2011). A systemic functional multimodal discourse analysis approach to pedagogic discourse. National University of Singapore.

Lim, F. V. (2019). Investigating intersemiosis: a systemic functional multimodal discourse analysis of the relationship between language and gesture in classroom discourse. Visual Communication, 20(1), 34-58.

Martinec, R., & Salway, A. (2005). A system for image–text relations in new (and old) media. Visual communication, 4(3), 337-371.

Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43-52.

McDermott, M. A., & Hand, B. (2010). A secondary reanalysis of student perceptions of non traditional writing tasks over a ten year period. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 47 (5), 518-539.

McDermott, M. A., & Hand, B. (2013). The impact of embedding multiple modes of representation within writing tasks on high school students’ chemistry understanding. Instructional Science, 41(1), 217-246.

Meneses, A., Escobar, J. P., & Véliz, S. (2018). The effects of multimodal texts on science reading comprehension in Chilean fifth-graders: text scaffolding and comprehension skills. International Journal of Science Education, 40 (18), 2226-2244.

Moro, L., Mortimer, E. L., & Tiberghien, A. (2020). The use of social semiotic multimodality and joint action theory to describe teaching practices:two cases studies with experienced teachers. Classroom Discourse, 11:3, 229-251.

Murcia, B. K. (2014). Interactive and multimodal pedagogy: A case study of how teachers andstudents use interactive whiteboard technology in primary science. Australian Journal of Education 2014, 58(1), 74–88.

Nielsen, W., Turney, A., Georgiou, H., & Jones, P. (2020). Working with multiple representations: preservice teachers’ decision-making to produce a digital explanation. Learning: Research and Practice, 6(1), 51-69.

O’Halloran, K. (2007). Mathematical and scientific forms of knowledge: A systemic functional multimodal grammatical approach. Language, knowledge and pedagogy: functional linguistic and sociological perspective, 205-236.

O’Halloran, K. L. (2011). Multimodal discourse analysis. Companion to Discourse. Continuum.

Oliveira, A. W., Rivera, S., Glass, R., Mastroianni, M., Wizner, F., & Amodeo, V. (2014). Multimodal semiosis in science read-alouds: extending beyond text delivery. Research in Science Education, 44 (5), 651-673.

Oz, M., & Memis, E. K. (2018). Effect of Multi Modal Representations on the Critical Thinking Skills of the Fifth Grade Students. International Journal of Progressive Education, 14(2), 209-227.

Pantidos, P. (2017). Narrating science in the classroom: the role of semiotic resources in evoking imaginative thinking. Journal of Science Teacher Education, 28(4), 388-401.

Patron, E., Wikman, S., Edfors, I., Johansson‐Cederblad, B., & Linder, C. (2017). Teachers’ reasoning: Classroom visual representational practices in the context of introductory chemical bonding. Science Education, 101 (6), 887-906.

Prain, V., & Waldrip, B. (2006). An exploratory study of teachers’ and students’ use of multi‐modal representations of concepts in primary science. International Journal of Science Education, 28 (15), 1843-1866.

Qiuping, He (2019). Towards Multisemiotic Literacy: Constructing Scientific Explanations in Secondary Science Classrooms. PhD Thesis: The Hong Kong Polytechnic University

Ridgley, L. M., DaVia Rubenstein, L., & Callan, G. L. (2022). Are gifted students adapting their self-regulated learning processes when experiencing challenging tasks? Gifted Child Quarterly, 66(1), 3-22.

Rusek, M., & Vojíř, K. (2019). Analysis of text difficulty in lower-secondary chemistry textbooks. Chemistry Education Research and Practice, 20(1), 85-94.

Schneider, W. J., & McGrew, K. S. (2013). Individual differences in the ability to process information. The handbook of educational theories, 767-782.

Selander, S., & Kress, G. (2010). Design för lärande-ett multimodalt perspektiv. Norstedts.

Siegle, D., & Powell, T. (2004). Exploring teacher biases when nominating students for gifted programs. Gifted Child Quarterly, 48(1), 21-29.

Søndergaard, K. D., & Hasse, C. (Eds.). (2012). Teknologiforståelse på skoler og hospitaler. Aarhus: Aarhus Universitetsforlag.

Shanahan, L. E. (2013). Multimodal representations: a fifth-grade teacher influences students' design and production. Pedagogies: An International Journal, 8(2), 85-102.

Shannon, C. (2014). Building scientific literacy/(IES): a cross-case analysis of how multimodal representations are used to make meaning during scientific inquiry. Texas Woman’s University).

Snyder, K. E., & Linnenbrink-Garcia, L. (2013). A developmental, person-centered approach to exploring multiple motivational pathways in gifted underachievement. Educational Psychologist, 48(4), 209-228.

Stieff, M. (2011). Improving representational competence using molecular simulations embedded in inquiry activities. Journal of Research in Science Teaching, 48 (10), 1137- 1158.

Taber, K. S. (2014). Student Thinking and Learning in Science: Perspectives on the nature and development of learners' ideas. Routledge.

Taber, K. S., & Akpan, B. (Eds.). (2016). Science education: An international course companion. Springer.

Tang, K. S. (2016). The interplay of representations and patterns of classroom discourse in science teaching sequences. International Journal of Science Education, 38 (13), 2069- 2095.

Tang, K. S. (2023). Distribution of visual representations across scientific genres in secondary science textbooks: Analysing Multimodal Genre Pattern of Verbal-Visual texts. Research in Science Education, 53(2), 357-375.

Tang, K. S., & Danielsson, K. (2018). Global developments in literacy research for science education. Springer International Publishing.

Tang, K. S., & Tan, S. C. (2017). Intertextuality and multimodal meanings in high school physics: written and spoken language in computer-supported collaborative student discourse. Classroom Discourse, 8(1), 19-35.

Tang, K. S., Won, M., & Treagust, D. (2019). Analytical framework for student-generated drawings. International Journal of Science Education, 41 (16), 2296-2322

Tippett, C. (2011). Exploring middle school students’ representational competence in science: Development and verification of a framework for learning with visual representations. University of Victoria.

Tippett, C. D. (2016). What recent research on diagrams suggests about learning with rather than learning from visual representations in science. International Journal of Science Education, 38(5), 725-746.

Treagust, D. F., Duit, R., & Fischer, H. E. (2017). Multiple representations in physics education. Springer International Publishing.

Tytler, R. (2007). Re-imagining science education: Engaging students in science for Australia's future.

Tytler, R., Ferguson, J., & White, P. (2020). A representation construction pedagogy of guided inquiry for learning data modelling. Learning: Research and Practice, 6(1), 5-18.

Tytler, R., & Hubber, P. (2016). Constructing representations to learn science. In Using multimodal representations to support learning in the science classroom (pp. 159-181). Springer, Cham.

Unsworth, L. (2006a). Towards a metalanguage for multiliteracies education: Describing the meaning-making resources of language-image interaction. English teaching: Practice and Critique, 5(1), 55-76.

Unsworth, L. (2006b). Multiliteracies and a metalanguage of image/text relations: implications for teaching English as a first or additional language in the 21st century. TESOL in Context, 147-162.

Unsworth, L. (2014). Multimodal reading comprehension: Curriculum expectations and large- scale literacy testing practices. Pedagogies: An International Journal, 9 (1), 26–44.

Unsworth, L., & Chan, E. (2009). Bridging multimodal literacies and national assessment programs in literacy. Australian Journal of Language and Literacy, The, 32 (3), 245.

Waldrip, B., & Prain, V. (2012). Learning from and through representations in science. In Second international handbook of science education (pp. 145-155). Springer, Dordrecht.

Waldrip, B., Prain, V., & Carolan, J. (2010). Using multi-modal representations to improve learning in junior secondary science. Research in Science Education, 40(1), 65-80.

Wanselin, H., Danielsson, K., & Wikman, S. (2022). Analysing Multimodal Texts in Science—a Social Semiotic Perspective. Research in science education, 52(3), 891-907.

Wu, S. C., Silveus, A., Vasquez, S., Biffi, D., Silva, C., & Weinburgh, M. (2019). Supporting ELLs’ use of hybrid language and argumentation during science instruction. Journal of Science Teacher Education, 30(1), 24-43.

Xu, L., Ferguson, J. & Tytler, R. Student reasoning about the lever principle through multimodal representations: a socio-semiotic approach. Int J of Sci and Math Educ 19, 1167–1186 (2021).

van der Meij, J., & de Jong, T. (2006). Supporting students' learning with multiple representations in a dynamic simulation-based learning environment. Learning and instruction, 16(3), 199-212.

van Leeuwen, T. (2005). Introducing social semiotics. Psychology Press.

VanTassel-Baska, J. (2023). Introduction to the integrated curriculum model. In Content-based curriculum for advanced learners (pp. 17-36). Routledge.

Yeo, J., & Nielsen, W. (2020) Multimodal science teaching and learning. Learning: Research and Practice, 6:1, 1-4, DOI: 10.1080/23735082.2020.1752043

Yeo, J., Lim, E., Tan, K. C. D., & Ong, Y. S. (2021). The efficacy of an image-to-writing approach to learning abstract scientific concepts: Temperature and heat. International Journal of Science and Mathematics Education, 19, 21-44.

Zhao, S., Djonov, E., & vanLeeuwen, T. (2014). Semiotic technology and practice: A multimodal social semiotic approach to PowerPoint. Text and Talk, 34 (3), 349–375.




Cómo citar

Gül, M. D., & Costu, B. (2023). Nivel de dificultad de las representaciones multimodales utilizadas por los profesores de ciencias de alumnos superdotados. Apuntes Universitarios, 13(4), 65–87.